Skip to main content
Log in

Accuracy and reliability of a subcutaneous continuous glucose monitoring device in critically ill patients

  • Original Research
  • Published:
Journal of Clinical Monitoring and Computing Aims and scope Submit manuscript

Abstract

Subcutaneous continuous glucose monitoring (CGM) may have benefits in achieving glycemic control in critically ill patients. The aim of this study was to assess the accuracy and reliability of the FreeStyle Navigator I in critically ill patients and to assess patient related factors influencing the accuracy and reliability. This study is a retrospective analysis of data from a randomized controlled trial conducted in a 20-bed mixed intensive care unit. Analytical accuracy, clinical accuracy and reliability were assessed against arterial blood glucose samples as reference. Assessment was according to recent consensus recommendations with median absolute relative difference (median ARD), Bland–Altman plots, the ISO system accuracy standards (ISO 15197:2013) and Clarke error grid analysis (CEG). We analyzed 2840 paired measurements from 155 critically ill patients. The median ARD of all paired values was 13.3 [6.9–22.1]%. The median ARD was significantly higher in both the hypoglycemic and the hyperglycemic range (32.4 [12.1–53.4]% and 18.7 [10.7–28.3]% respectively, p < 0.001). The Bland–Altman analysis showed a mean bias of − 0.82 mmol/L with a lower limit of agreement (LOA) of − 3.88 mmol/L and an upper LOA of 2.24 mmol/L. A total of 1626 (57.3%) values met the ISO-2013, standards and 1,334 (47%) CGM values were within 12.5% from the reference value. CEG: 71.0% zone A, 25.8% zone B, 0.5% zone C, 2.5% zone D, 0.3% zone E. The median overall real-time data display time was 94.0 ± 14.9% and in 23% of the patients, the sensor measured < 95% of the time. Additionally, data gaps longer than 30 min were found in 48% of the patients. The analytical accuracy of the FreeStyle Navigator I in critically ill patients was suboptimal. Furthermore, the clinical accuracy, did not meet the required standards. The reliability was satisfactory, however, in almost a quarter of the patients the realtime data display was < 95%. The accuracy was considerably and significantly lower in hyper- and hypoglycemic ranges.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Van den Berghe G, Wouters P, Weekers F, Verwaest C, Bruyninckx F, Schetz M, et al. Intensive insulin therapy in critically ill patients. N Engl J Med. 2001;345(19):1359–67.

    Article  PubMed  Google Scholar 

  2. Preiser JC, Devos P, Ruiz-Santana S, Melot C, Annane D, Groeneveld J, et al. A prospective randomised multi-centre controlled trial on tight glucose control by intensive insulin therapy in adult intensive care units: the Glucontrol study. Intensive Care Med. 2009;35(10):1738–48.

    Article  PubMed  CAS  Google Scholar 

  3. Krinsley JS. Association between hyperglycemia and increased hospital mortality in a heterogeneous population of critically ill patients. Mayo Clin Proc. 2003;78(12):1471–8.

    Article  PubMed  Google Scholar 

  4. Devos P, Preiser JC. Current controversies around tight glucose control in critically ill patients. Curr Opin Clin Nutr Metab Care. 2007;10(2):206–9.

    Article  PubMed  Google Scholar 

  5. Finfer S, Liu B, Chittock DR, Norton R, Myburgh JA, McArthur C, et al. Hypoglycemia and risk of death in critically ill patients. N Engl J Med. 2012;367(12):1108–18.

    Article  PubMed  CAS  Google Scholar 

  6. Hermanides J, Bosman RJ, Vriesendorp TM, Dotsch R, Rosendaal FR, Zandstra DF, et al. Hypoglycemia is associated with intensive care unit mortality. Crit Care Med. 2010;38(6):1430–4.

    Article  PubMed  Google Scholar 

  7. Brunkhorst FM, Engel C, Bloos F, Meier-Hellmann A, Ragaller M, Weiler N, et al. Intensive insulin therapy and pentastarch resuscitation in severe sepsis. N Engl J Med. 2008;358(2):125–39.

    Article  PubMed  CAS  Google Scholar 

  8. Van den Berghe G, Wilmer A, Hermans G, Meersseman W, Wouters PJ, Milants I, et al. Intensive insulin therapy in the medical ICU. N Engl J Med. 2006;354(5):449–61.

    Article  PubMed  Google Scholar 

  9. Finfer S, Chittock DR, Su SY, Blair D, Foster D, Dhingra V, et al. Intensive versus conventional glucose control in critically ill patients. N Engl J Med. 2009;360(13):1283–97

    Article  PubMed  Google Scholar 

  10. Arabi YM, Dabbagh OC, Tamim HM, Al-Shimemeri AA, Memish ZA, Haddad SH, et al. Intensive versus conventional insulin therapy: a randomized controlled trial in medical and surgical critically ill patients. Crit Care Med. 2008;36(12):3190–7.

    Article  PubMed  CAS  Google Scholar 

  11. Marathe PH, Gao HX, Close KL. American diabetes association standards of medical care in diabetes 2017. J Diabetes. 2017;9(4):320–4.

    Article  PubMed  Google Scholar 

  12. Hermanides J, Vriesendorp TM, Bosman RJ, Zandstra DF, Hoekstra JB, DeVries JH. Glucose variability is associated with intensive care unit mortality. Crit Care Med. 2010;38(3):838–42.

    Article  PubMed  CAS  Google Scholar 

  13. Aragon D. Evaluation of nursing work effort and perceptions about blood glucose testing in tight glycemic control. Am J Crit Care. 2006;15(4):370–7.

    PubMed  Google Scholar 

  14. Gartemann J, Caffrey E, Hadker N, Crean S, Creed GM, Rausch C. Nurse workload in implementing a tight glycaemic control protocol in a UK hospital: a pilot time-in-motion study. Nurs Crit Care. 2012;17(6):279–84.

    Article  PubMed  Google Scholar 

  15. Boom DT, Sechterberger MK, Rijkenberg S, Kreder S, Bosman RJ, Wester JP, et al. Insulin treatment guided by subcutaneous continuous glucose monitoring compared to frequent point-of-care measurement in critically ill patients: a randomized controlled trial. Crit Care. 2014;18(4):453

    Article  PubMed  PubMed Central  Google Scholar 

  16. van Steen SC, Rijkenberg S, Limpens J, van der Voort PH, Hermanides J, DeVries JH. The clinical benefits and accuracy of continuous glucose monitoring systems in critically Ill patients—a systematic scoping review. Sensors. 2017;17(1):146.

    Article  CAS  Google Scholar 

  17. Wollersheim T, Engelhardt LJ, Pachulla J, Moergeli R, Koch S, Spies C, et al. Accuracy, reliability, feasibility and nurse acceptance of a subcutaneous continuous glucose management system in critically ill patients: a prospective clinical trial. Ann Intensive Care. 2016;6(1):70.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Finfer S, Wernerman J, Preiser JC, Cass T, Desaive T, Hovorka R, et al. Clinical review: consensus recommendations on measurement of blood glucose and reporting glycemic control in critically ill adults. Crit Care. 2013;17(3):229.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Wernerman J, Desaive T, Finfer S, Foubert L, Furnary A, Holzinger U, et al. Continuous glucose control in the ICU: report of a 2013 round table meeting. Crit Care. 2014;18(3):226.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Brunner R, Kitzberger R, Miehsler W, Herkner H, Madl C, Holzinger U. Accuracy and reliability of a subcutaneous continuous glucose-monitoring system in critically ill patients. Crit Care Med. 2011;39(4):659–64.

    Article  PubMed  Google Scholar 

  21. Kosiborod M, Gottlieb RK, Sekella JA, Peterman D, Grodzinsky A, Kennedy P, et al. Performance of the Medtronic Sentrino continuous glucose management (CGM) system in the cardiac intensive care unit. BMJ Open Diabetes Res Care. 2014;2(1):e000037.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Lorencio C, Leal Y, Bonet A, Bondia J, Palerm CC, Tache A, et al. Real-time continuous glucose monitoring in an intensive care unit: better accuracy in patients with septic shock. Diabetes Technol Ther. 2012;14(7):568–75.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. van Hooijdonk RT, Leopold JH, Winters T, Binnekade JM, Juffermans NP, Horn J, et al. Point accuracy and reliability of an interstitial continuous glucose-monitoring device in critically ill patients: a prospective study. Crit Care. 2015;19:34.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Rood E, Bosman RJ, van der Spoel JI, Taylor P, Zandstra DF. Use of a computerized guideline for glucose regulation in the intensive care unit improved both guideline adherence and glucose regulation. J Am Med Inform Assoc. 2005;12(2):172–80.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Obermaier K, Schmelzeisen-Redeker G, Schoemaker M, Klotzer HM, Kirchsteiger H, Eikmeier H, et al. Performance evaluations of continuous glucose monitoring systems: precision absolute relative deviation is part of the assessment. J Diabetes Sci Technol. 2013;7(4):824–32.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Bland JM, Altman DG. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet. 1986;1(8476):307–10.

    Article  PubMed  CAS  Google Scholar 

  27. Clarke WL, Cox D, Gonder-Frederick LA, Carter W, Pohl SL. Evaluating clinical accuracy of systems for self-monitoring of blood glucose. Diabetes Care. 1987;10(5):622–8.

    Article  PubMed  CAS  Google Scholar 

  28. Krouwer JS, Cembrowski GS. A review of standards and statistics used to describe blood glucose monitor performance. J Diabetes Sci Technol. 2010;4(1):75–83.

    Article  PubMed  PubMed Central  Google Scholar 

  29. De Block CE, Gios J, Verheyen N, Keenoy B, Rogiers P, Jorens PG, et al. Randomized evaluation of glycemic control in the medical intensive care unit using real-time continuous glucose monitoring (REGIMEN Trial). Diabetes Technol Ther. 2015;17(12):889–98.

    Article  PubMed  CAS  Google Scholar 

  30. Leelarathna L, English SW, Thabit H, Caldwell K, Allen JM, Kumareswaran K, et al. Feasibility of fully automated closed-loop glucose control using continuous subcutaneous glucose measurements in critical illness: a randomized controlled trial. Crit Care. 2013;17(4):R159.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Leelarathna L, English SW, Thabit H, Caldwell K, Allen JM, Kumareswaran K, et al. Accuracy of subcutaneous continuous glucose monitoring in critically ill adults: improved sensor performance with enhanced calibrations. Diabetes Technol Ther. 2014;16(2):97–101.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Saur NM, England MR, Menzie W, Melanson AM, Trieu MQ, Berlin J, et al. Accuracy of a novel noninvasive transdermal continuous glucose monitor in critically ill patients. J Diabetes Sci Technol. 2014;8(5):945–50.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Sechterberger MK, van der Voort PH, Strasma PJ, DeVries JH. Accuracy of intra-arterial and subcutaneous continuous glucose monitoring in postoperative cardiac surgery patients in the ICU. J Diabetes Sci Technol. 2015;9(3):663–7.

    Article  PubMed  Google Scholar 

  34. Siegelaar SE, Barwari T, Hermanides J, van der Voort PH, Hoekstra JB, DeVries JH. Microcirculation and its relation to continuous subcutaneous glucose sensor accuracy in cardiac surgery patients in the intensive care unit. J Thorac Cardiovasc Surg. 2013;146(5):1283–9.

    Article  PubMed  CAS  Google Scholar 

  35. Schierenbeck F, Franco-Cereceda A, Liska J. Accuracy of 2 different continuous glucose monitoring systems in patients undergoing cardiac surgery. J Diabetes Sci Technol. 2017;11(1):108–16.

    Article  PubMed  CAS  Google Scholar 

  36. Song IK, Lee JH, Kang JE, Park YH, Kim HS, Kim JT. Continuous glucose monitoring system in the operating room and intensive care unit: any difference according to measurement sites? J Clin Monit Comput. 2017;31(1):187–94.

    Article  PubMed  Google Scholar 

  37. Yue XY, Zheng Y, Cai YH, Yin NN, Zhou JX. Real-time continuous glucose monitoring shows high accuracy within 6 h after sensor calibration: a prospective study. PLoS ONE. 2013;8(3):e60070.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Garg SK, Smith J, Beatson C, Lopez-Baca B, Voelmle M, Gottlieb PA. Comparison of accuracy and safety of the SEVEN and the Navigator continuous glucose monitoring systems. Diabetes Technol Ther. 2009;11(2):65–72.

    Article  PubMed  CAS  Google Scholar 

  39. Damiano ER, McKeon K, El-Khatib FH, Zheng H, Nathan DM, Russell SJ. A comparative effectiveness analysis of three continuous glucose monitors: the Navigator, G4 Platinum, and Enlite. J Diabetes Sci Technol. 2014;8(4):699–708.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Inzucchi SE. Clinical practice. Management of hyperglycemia in the hospital setting. N Engl J Med. 2006;355(18):1903–11.

    Article  PubMed  CAS  Google Scholar 

  41. Aust H, Dinges G, Nardi-Hiebl S, Koch T, Lattermann R, Schricker T, et al. Feasibility and precision of subcutaneous continuous glucose monitoring in patients undergoing CABG surgery. J Cardiothorac Vasc Anesth. 2014;28(5):1264–72.

    Article  PubMed  Google Scholar 

  42. Corstjens AM, Ligtenberg JJ, van der Horst IC, Spanjersberg R, Lind JS, Tulleken JE, et al. Accuracy and feasibility of point-of-care and continuous blood glucose analysis in critically ill ICU patients. Crit Care. 2006;10(5):R135.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Kopecky P, Mraz M, Blaha J, Lindner J, Svacina S, Hovorka R, et al. The use of continuous glucose monitoring combined with computer-based eMPC algorithm for tight glucose control in cardiosurgical ICU. Biomed Res Int. 2013;2013:186439.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. De Block C, Manuel YK, Van GL, Rogiers P. Intensive insulin therapy in the intensive care unit: assessment by continuous glucose monitoring. Diabetes Care. 2006;29(8):1750–6.

    Article  PubMed  CAS  Google Scholar 

  45. Clarke WL, Anderson S, Farhy L, Breton M, Gonder-Frederick L, Cox D, et al. Evaluating the clinical accuracy of two continuous glucose sensors using continuous glucose-error grid analysis. Diabetes Care. 2005;28(10):2412–7.

    Article  PubMed  CAS  Google Scholar 

  46. Wentholt IM, Hoekstra JB, DeVries JH. A critical appraisal of the continuous glucose-error grid analysis. Diabetes Care. 2006;29(8):1805–11.

    Article  PubMed  Google Scholar 

  47. Signal M, Gottlieb R, Le CA, Chase JG. Continuous glucose monitoring and trend accuracy: news about a trend compass. J Diabetes Sci Technol. 2014;8(5):986–97.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Facchinetti A, Del FS, Sparacino G, Castle JR, Ward WK, Cobelli C. Modeling the glucose sensor error. IEEE Trans Biomed Eng. 2014;61(3):620–9.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Rijkenberg.

Ethics declarations

Conflict of interest

This retrospective analysis is funded by the authors’ own department. S.R, SCVS and PHJvdV declare that they have no disclosures. JHDV received speaker fees from Novo Nordisk and Senseonics, research support from Abbott, Dexcom, Medtronic, Novo Nordisk, Sanofi and Senseonics, and fees for serving on advisory boards from Merck Sharpe and Dohme, Novo Nordisk, Roche and Sanofi.

Appendix

Appendix

See Table 6.

Table 6 Factors influencing reliability

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rijkenberg, S., van Steen, S.C., DeVries, J.H. et al. Accuracy and reliability of a subcutaneous continuous glucose monitoring device in critically ill patients. J Clin Monit Comput 32, 953–964 (2018). https://doi.org/10.1007/s10877-017-0086-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10877-017-0086-z

Keywords

Navigation