Journal of Clinical Monitoring and Computing

, Volume 31, Issue 5, pp 1009–1017 | Cite as

Evaluation of a non-invasive multisensor accelerometer for calculating energy expenditure in ventilated intensive care patients compared to indirect calorimetry and predictive equations

  • Janine Krüger
  • Matthias Kraft
  • Matthias Gründling
  • Sigrun Friesecke
  • Simone Gärtner
  • Lena J. Vogt
  • Nicole Schüler
  • Antje Steveling
  • Markus M. LerchEmail author
  • Ali A. Aghdassi
Original Research


Continuous measurement of resting energy expenditure (REE) in critically ill patients remains challenging but is required to prevent malnutrition. SenseWear Pro 3 Armband (SWA) is a research grade accelerometer for assessment of REE with the advantage of easy handling. In a prospective study we compared SWA with indirect calorimetry (IC) and predictive equations in critically ill, ventilated patients. REE was measured by SWA, IC and calculated by predictive formulas. Potential confounding factors that influence REE were also recorded. Results of SenseWear Armband and indirect calorimetry were compared using the Bland–Altman method. 34 ICU patients were investigated. SWA underestimated resting energy expenditure compared to IC with a mean bias of ΔREE = −253.6 ± 333.2 kcal, equivalent to −11.7 % (p = 0.025). This underestimation was seen in both, medical (−14.9 %) and surgical (−12.9 %) patients and the bias was greater in patients with fever (−19.0 %), tachycardia (−18.7 %) or tachypnea (−26.2 %). Differences were also noted when SWA was compared to predictive formulas. At present, SWA cannot be regarded as an alternative to indirect calorimetry. Individual measurements are often inaccurate and should be used with caution until improved algorithms, based on the results of this study, have been implemented.


Critically ill Indirect calorimetry Energy expenditure SenseWear Pro Armband Predictive equations 



Harris–Benedict equation


Indirect calorimetry


Intensive care unit


Resting energy expenditure


Respiratory quotient


SenseWear Pro 3 Armband



JK, SG and LJV received a Gerhard-Domagk-Scholarship from University Medicine Greifswald made possible through unrestricted educational grants from Nutricia GmbH (Erlangen, Germany), Baxter Deutschland GmbH (Unterschleissheim, Germany) and Gesundheits GmbH (Ahrensburg).

Author’s contribution

JK and MK are equal contributors. JK, MK, MML and AAA concepted and designed the study and wrote the manuscript. All authors substantially contributed to conception, design, acquisition and analysis of data and interpretation of the study.

Compliance with ethical standards

Conflict of interest

The authors declare to have no conflict of interest.

Supplementary material

10877_2016_9934_MOESM1_ESM.doc (147 kb)
Supplementary material 1 (DOC 147 kb)


  1. 1.
    Weekes CE. Controversies in the determination of energy requirements. Proc Nutr Soc. 2007;66:367–77.CrossRefGoogle Scholar
  2. 2.
    Giner M, Laviano A, Meguid MM, Gleason JR. In 1995 a correlation between malnutrition and poor outcome in critically ill patients still exists. Nutrition. 1996;12(1):23–9. doi: 10.1016/0899-9007(95)00015-1.CrossRefPubMedGoogle Scholar
  3. 3.
    Lerch MM, Braun J, Harder M, Hofstadter F, Schumpelick V, Matern S. Postoperative adaptation of the small intestine after total colectomy and J-pouch-anal anastomosis. Dis Colon Rectum. 1989;32(7):600–8.CrossRefPubMedGoogle Scholar
  4. 4.
    Battezzati A, Vigano R. Indirect calorimetry and nutritional problems in clinical practice. Acta Diabetol. 2001;38(1):1–5.CrossRefPubMedGoogle Scholar
  5. 5.
    McClave SA, Lowen CC, Kleber MJ, Nicholson JF, Jimmerson SC, McConnell JW, Jung LY. Are patients fed appropriately according to their caloric requirements? JPEN. 1998;22(6):375–81.CrossRefGoogle Scholar
  6. 6.
    Villet S, Chiolero RL, Bollmann MD, Revelly JP, Cayeux RNM, Delarue J, Berger MM. Negative impact of hypocaloric feeding and energy balance on clinical outcome in ICU patients. Clin Nutr. 2005;24(4):502–9. doi: 10.1016/j.clnu.2005.03.006.CrossRefPubMedGoogle Scholar
  7. 7.
    Chima CS, Barco K, Dewitt ML, Maeda M, Teran JC, Mullen KD. Relationship of nutritional status to length of stay, hospital costs, and discharge status of patients hospitalized in the medicine service. J Am Diet Assoc. 1997;97(9):975–8. doi: 10.1016/S0002-8223(97)00235-6 (quiz 979–980).CrossRefPubMedGoogle Scholar
  8. 8.
    Reinhardt GF, Myscofski JW, Wilkens DB, Dobrin PB, Mangan JE Jr, Stannard RT. Incidence and mortality of hypoalbuminemic patients in hospitalized veterans. JPEN. 1980;4(4):357–9.CrossRefGoogle Scholar
  9. 9.
    Robinson G, Goldstein M, Levine GM. Impact of nutritional status on DRG length of stay. JPEN. 1987;11(1):49–51.CrossRefGoogle Scholar
  10. 10.
    Correia MI, Waitzberg DL. The impact of malnutrition on morbidity, mortality, length of hospital stay and costs evaluated through a multivariate model analysis. Clin Nutr. 2003;22(3):235–9. doi: 10.1016/S0261-5614(02)00215-7.CrossRefPubMedGoogle Scholar
  11. 11.
    Mechanick JI, Brett EM. Nutrition support of the chronically critically ill patient. Crit Care Clin. 2002;18(3):597–618.CrossRefPubMedGoogle Scholar
  12. 12.
    Klein CJ, Stanek GS, Wiles CE 3rd. Overfeeding macronutrients to critically ill adults: metabolic complications. J Am Diet Assoc. 1998;98(7):795–806. doi: 10.1016/S0002-8223(98)00179-5.CrossRefPubMedGoogle Scholar
  13. 13.
    Plank LD, Hill GL. Energy balance in critical illness. Proc Nutr Soc. 2003;62(2):545–52.CrossRefPubMedGoogle Scholar
  14. 14.
    Thibault R, Pichard C. Nutrition and clinical outcome in intensive care patients. Curr Opin Clin Nutr Metab Care. 2010;13(2):177–83. doi: 10.1097/MCO.0b013e32833574b9.CrossRefPubMedGoogle Scholar
  15. 15.
    Kan MN, Chang HH, Sheu WF, Cheng CH, Lee BJ, Huang YC. Estimation of energy requirements for mechanically ventilated, critically ill patients using nutritional status. Crit Care. 2003;7(5):R108–15. doi: 10.1186/cc2366.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Pielmeier U, Rousing ML, Andreassen S. A model of changes in energy expenditure to specify daily caloric intake targets in sepsis and trauma patients. Intensive Care Med. 2014;40(Suppl. 1):83, no. 0279.Google Scholar
  17. 17.
    Haugen HA, Chan LN, Li F. Indirect calorimetry: a practical guide for clinicians. Nutr Clin Pract. 2007;22(4):377–88. doi: 10.1177/0115426507022004377.CrossRefPubMedGoogle Scholar
  18. 18.
    Stapel SN, de Grooth HJ, Alimohamad H, Elbers PW, Girbes AR, Weijs PJ, Oudemans-van Straaten HM. Ventilator-derived carbon dioxide production to assess energy expenditure in critically ill patients: proof of concept. Crit Care. 2015;19:370. doi: 10.1186/s13054-015-1087-2.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Rousing ML, Hahn-Pedersen MH, Andreassen S, Pielmeier U, Preiser JC. Energy expenditure in critically ill patients estimated by population-based equations, indirect calorimetry and CO2-based indirect calorimetry. Ann Intensive Care. 2016;6(1):16. doi: 10.1186/s13613-016-0118-8.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    André D, Pelletier R, Farringdon J, Safier S, Talbott W, Stone R, Vyas N, Trimble J, Wolf D, Vishnubhatla S, Boehmke S, Stivoric J, Teller A. The development of the SenseWear® armband, a revolutionary energy assessment device to assess physical activity and lifestyle. Body Media Inc. 2006;1–19.Google Scholar
  21. 21.
    LaMonte MJ, Ainsworth BE, Reis JP. Measuring physical activity. In: Wood TM, Zhu W, editors. Measurement theory and practice in kinesiology. Leeds: Human Kinetics; 2006. p. 237–62.Google Scholar
  22. 22.
    Fruin ML, Rankin JW. Validity of a multi-sensor armband in estimating rest and exercise energy expenditure. Med Sci Sports Exerc. 2004;36(6):1063–9. doi: 10.1249/01.MSS.0000128144.91337.38.CrossRefPubMedGoogle Scholar
  23. 23.
    St-Onge M, Mignault D, Allison DB, Rabasa-Lhoret R. Evaluation of a portable device to measure daily energy expenditure in free-living adults. Am J Clin Nutr. 2007;85(3):742–9.PubMedGoogle Scholar
  24. 24.
    Bertoli S, Posata A, Battezzati A, Spadafranca A, Testolin G, Bedogni G. Poor agreement between a portable armband and indirect calorimetry in the assessment of resting energy expenditure. Clin Nutr. 2008;27(2):307–10. doi: 10.1016/j.clnu.2007.11.005.CrossRefPubMedGoogle Scholar
  25. 25.
    Papazoglou D, Augello G, Tagliaferri M, Savia G, Marzullo P, Maltezos E, Liuzzi A. Evaluation of a multisensor armband in estimating energy expenditure in obese individuals. Obesity (Silver Spring). 2006;14(12):2217–23. doi: 10.1038/oby.2006.260.CrossRefGoogle Scholar
  26. 26.
    Cereda E, Turrini M, Ciapanna D, Marbello L, Pietrobelli A, Corradi E. Assessing energy expenditure in cancer patients: a pilot validation of a new wearable device. JPEN. 2007;31(6):502–7. doi: 10.1177/0148607107031006502.CrossRefGoogle Scholar
  27. 27.
    Patel SA, Benzo RP, Slivka WA, Sciurba FC. Activity monitoring and energy expenditure in COPD patients: a validation study. COPD. 2007;4(2):107–12. doi: 10.1080/15412550701246658.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Dwyer TJAJA, McKeough ZJ, Elkins MR, Bye PTP. Evaluation of the SenseWear activity monitor during exercise in cystic fibrosis and in health. Respir Med. 2009;103:1511–7.CrossRefPubMedGoogle Scholar
  29. 29.
    Tierney M, Fraser A, Purtill H, Kennedy N. Study to determine the criterion validity of the SenseWear Armband as a measure of physical activity in people with rheumatoid arthritis. Arthritis Care Res (Hoboken). 2013;65(6):888–95. doi: 10.1002/acr.21914.CrossRefGoogle Scholar
  30. 30.
    Avesani CM, Trolonge S, Deleaval P, Baria F, Mafra D, Faxen-Irving G, Chauveau P, Teta D, Kamimura MA, Cuppari L, Chan M, Heimburger O, Fouque D. Physical activity and energy expenditure in haemodialysis patients: an international survey. Nephrol Dial Transplant. 2012;27(6):2430–4. doi: 10.1093/ndt/gfr692.CrossRefPubMedGoogle Scholar
  31. 31.
    Mackey DC, Manini TM, Schoeller DA, Koster A, Glynn NW, Goodpaster BH, Satterfield S, Newman AB, Harris TB, Cummings SR. Validation of an armband to measure daily energy expenditure in older adults. J Gerontol A Biol Sci Med Sci. 2011;66(10):1108–13. doi: 10.1093/gerona/glr101.CrossRefPubMedGoogle Scholar
  32. 32.
    Heiermann S, Khalaj Hedayati K, Muller MJ, Dittmar M. Accuracy of a portable multisensor body monitor for predicting resting energy expenditure in older people: a comparison with indirect calorimetry. Gerontology. 2010;57(5):473–9. doi: 10.1159/000322109.PubMedGoogle Scholar
  33. 33.
    Rokuss K, Kalenka A, Bender HJ, Hinkelbein J. Intensive care patients. Determining daily energy expenditure—a comparison of two methods. Anaesthesist. 2009;58(8):787–94. doi: 10.1007/s00101-009-1552-x.CrossRefPubMedGoogle Scholar
  34. 34.
    Le Gall JR, Lemeshow S, Saulnier F. A new Simplified Acute Physiology Score (SAPS II) based on a European/North American multicenter study. JAMA. 1993;270(24):2957–63.CrossRefPubMedGoogle Scholar
  35. 35.
    Weir JB. New methods for calculating metabolic rate with special reference to protein metabolism. J Physiol. 1949;109(1–2):1–9.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Frankenfield DC, Coleman A, Alam S, Cooney RN. Analysis of estimation methods for resting metabolic rate in critically ill adults. JPEN. 2009;33(1):27–36. doi: 10.1177/0148607108322399.CrossRefGoogle Scholar
  37. 37.
    Malavolti M, Pietrobelli A, Dugoni M, Poli M, Romagnoli E, De Cristofaro P, Battistini NC. A new device for measuring resting energy expenditure (REE) in healthy subjects. Nutr Metab Cardiovasc Dis. 2007;17(5):338–43. doi: 10.1016/j.numecd.2005.12.009.CrossRefPubMedGoogle Scholar
  38. 38.
    Walker RN, Heuberger RA. Predictive equations for energy needs for the critically ill. Respir Care. 2009;54(4):509–21.PubMedGoogle Scholar
  39. 39.
    Dummler R, Zittermann A, Schafer M, Emmerich M. Postoperative assessment of daily energy expenditure. Comparison of two methods. Anaesthesist. 2013;62(1):20–6. doi: 10.1007/s00101-012-2120-3.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Janine Krüger
    • 1
  • Matthias Kraft
    • 1
  • Matthias Gründling
    • 2
  • Sigrun Friesecke
    • 3
  • Simone Gärtner
    • 1
  • Lena J. Vogt
    • 1
  • Nicole Schüler
    • 1
  • Antje Steveling
    • 1
  • Markus M. Lerch
    • 1
    Email author
  • Ali A. Aghdassi
    • 1
  1. 1.Department of Medicine AUniversity Medicine GreifswaldGreifswaldGermany
  2. 2.Department of Anaesthesiology and Intensive CareUniversity Medicine GreifswaldGreifswaldGermany
  3. 3.Department of Medicine BUniversity Medicine GreifswaldGreifswaldGermany

Personalised recommendations