Advertisement

Journal of Clinical Monitoring and Computing

, Volume 31, Issue 5, pp 895–902 | Cite as

The use of the oesophageal Doppler in perioperative medicine: new opportunities in research and clinical practice

  • Bernardo Bollen PintoEmail author
  • Glen Atlas
  • Bart F. Geerts
  • Karim Bendjelid
Review Paper

Abstract

The oesophageal Doppler (OD) is a minimally invasive haemodynamic monitor used in the surgical theatre and the ICU. Using the OD, goal-directed therapy (GDT) has been shown to reduce perioperative complications in high-risk surgical patients. However, most GDT protocols currently in use are limited to stroke volume optimisation. In the present manuscript, we examine the conceptual models behind new OD-based measurements. These would provide the clinician with a comprehensive view of haemodynamic pathophysiology; including pre-load, contractility, and afterload. Specifically, volume status could be estimated using mean systemic filling pressure (MSFP), the pressure to which all intravascular pressures equilibrate during asystole. Using the OD, MSFP could be readily estimated by simultaneous measurements of aortic blood flow and arterial pressure with sequential manoeuvres of increasing airway pressure. This would result in subsequent reductions in cardiac output and arterial pressure and would allow for a linear extrapolation of a static MSFP value to a “zero flow” state. In addition, we also demonstrate that EF is proportional to mean blood flow velocity measured in the descending thoracic aorta with the OD. Furthermore, OD-derived indexes of blood flow velocity and acceleration, as well as force and kinetic energy, can be derived and used for continuous assessment of cardiac contractility at the bedside. Using OD-derived parameters, the different components of afterload: inertia, resistance and elastance, could also be individually determined. The integration of these additional haemodynamic parameters could assist the clinician in optimising and individualising haemodynamic performance in unstable patients.

Keywords

Haemodynamic monitoring Doppler technique Intensive care Perioperative 

Notes

Funding

This work received no financial support. Authors were funded by Institutional funds.

Compliance with ethical standards

Conflicts of interest

BG has performed consultancy work for Edwards Lifescience LCC on behalf of his hospital employer. There are no other conflicts of interest to be declared.

References

  1. 1.
    Hamilton MA, Cecconi M, Rhodes A. A systematic review and meta-analysis on the use of preemptive hemodynamic intervention to improve postoperative outcomes in moderate and high-risk surgical patients. Anesth Analg. 2011;112(6):1392–402. doi: 10.1213/ANE.0b013e3181eeaae5.CrossRefPubMedGoogle Scholar
  2. 2.
    Cecconi M, Corredor C, Arulkumaran N, Abuella G, Ball J, Grounds RM, Hamilton M, Rhodes A. Clinical review: goal-directed therapy-what is the evidence in surgical patients? The effect on different risk groups. Crit Care. 2013;17(2):209. doi: 10.1186/cc11823.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Pearse RM, Harrison DA, MacDonald N, Gillies MA, Blunt M, Ackland G, Grocott MP, Ahern A, Griggs K, Scott R, Hinds C, Rowan K, Group OS. Effect of a perioperative, cardiac output-guided hemodynamic therapy algorithm on outcomes following major gastrointestinal surgery: a randomized clinical trial and systematic review. JAMA. 2014;311(21):2181–90. doi: 10.1001/jama.2014.5305.CrossRefPubMedGoogle Scholar
  4. 4.
    Pearse RM, Harrison DA, James P, Watson D, Hinds C, Rhodes A, Grounds RM, Bennett ED. Identification and characterisation of the high-risk surgical population in the United Kingdom. Crit Care. 2006;10(3):R81. doi: 10.1186/cc4928.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Saugel B, Cecconi M, Wagner JY, Reuter DA. Noninvasive continuous cardiac output monitoring in perioperative and intensive care medicine. Br J Anaesth. 2015;114(4):562–75. doi: 10.1093/bja/aeu447.CrossRefPubMedGoogle Scholar
  6. 6.
    Singer M. Oesophageal Doppler. Curr Opin Crit Care. 2009;15(3):244–8. doi: 10.1097/MCC.0b013e32832b7083.CrossRefPubMedGoogle Scholar
  7. 7.
    Singer M. Oesophageal Doppler monitoring: should it be routine for high-risk surgical patients? Curr Opin Anaesthesiol. 2011;24(2):171–6. doi: 10.1097/ACO.0b013e32834452b2.CrossRefPubMedGoogle Scholar
  8. 8.
    Mythen MG, Webb AR. Perioperative plasma volume expansion reduces the incidence of gut mucosal hypoperfusion during cardiac surgery. Arch Surg. 1995;130(4):423–9.CrossRefPubMedGoogle Scholar
  9. 9.
    Wakeling HG, McFall MR, Jenkins CS, Woods WG, Miles WF, Barclay GR, Fleming SC. Intraoperative oesophageal Doppler guided fluid management shortens postoperative hospital stay after major bowel surgery. Br J Anaesth. 2005;95(5):634–42. doi: 10.1093/bja/aei223.CrossRefPubMedGoogle Scholar
  10. 10.
    Noblett SE, Snowden CP, Shenton BK, Horgan AF. Randomized clinical trial assessing the effect of Doppler-optimized fluid management on outcome after elective colorectal resection. Br J Surg. 2006;93(9):1069–76. doi: 10.1002/bjs.5454.CrossRefPubMedGoogle Scholar
  11. 11.
    Zakhaleva J, Tam J, Denoya PI, Bishawi M, Bergamaschi R. The impact of intravenous fluid administration on complication rates in bowel surgery within an enhanced recovery protocol: a randomized controlled trial. Colorectal Dis. 2013;15(7):892–9. doi: 10.1111/codi.12180.CrossRefPubMedGoogle Scholar
  12. 12.
    El Sharkawy OA, Refaat EK, Ibraheem AE, Mahdy WR, Fayed NA, Mourad WS, Abd Elhafez HS, Yassen KA. Transoesophageal Doppler compared to central venous pressure for perioperative hemodynamic monitoring and fluid guidance in liver resection. Saudi J Anaesth. 2013;7(4):378–86. doi: 10.4103/1658-354X.121044.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Sinclair S, James S, Singer M. Intraoperative intravascular volume optimisation and length of hospital stay after repair of proximal femoral fracture: randomised controlled trial. BMJ. 1997;315(7113):909–12.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Venn R, Steele A, Richardson P, Poloniecki J, Grounds M, Newman P. Randomized controlled trial to investigate influence of the fluid challenge on duration of hospital stay and perioperative morbidity in patients with hip fractures. Br J Anaesth. 2002;88(1):65–71.CrossRefPubMedGoogle Scholar
  15. 15.
    Chappell D, Jacob M, Hofmann-Kiefer K, Conzen P, Rehm M. A rational approach to perioperative fluid management. Anesthesiology. 2008;109(4):723–40. doi: 10.1097/ALN.0b013e3181863117.CrossRefPubMedGoogle Scholar
  16. 16.
    Hilton AK, Pellegrino VA, Scheinkestel CD. Avoiding common problems associated with intravenous fluid therapy. Med J Aust. 2008;189(9):509–13.PubMedGoogle Scholar
  17. 17.
    Stephan F, Flahault A, Dieudonne N, Hollande J, Paillard F, Bonnet F. Clinical evaluation of circulating blood volume in critically ill patients—contribution of a clinical scoring system. Br J Anaesth. 2001;86(6):754–62.CrossRefPubMedGoogle Scholar
  18. 18.
    Marik PE, Baram M, Vahid B. Does central venous pressure predict fluid responsiveness? A systematic review of the literature and the tale of seven mares. Chest. 2008;134(1):172–8. doi: 10.1378/chest.07-2331.CrossRefPubMedGoogle Scholar
  19. 19.
    Cecconi M, De Backer D, Antonelli M, Beale R, Bakker J, Hofer C, Jaeschke R, Mebazaa A, Pinsky MR, Teboul JL, Vincent JL, Rhodes A. Consensus on circulatory shock and hemodynamic monitoring. Task force of the European Society of Intensive Care Medicine. Intensive Care Med. 2014;40(12):1795–815. doi: 10.1007/s00134-014-3525-z.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Monnet X, Rienzo M, Osman D, Anguel N, Richard C, Pinsky MR, Teboul JL. Passive leg raising predicts fluid responsiveness in the critically ill. Crit Care Med. 2006;34(5):1402–7. doi: 10.1097/01.CCM.0000215453.11735.06.CrossRefPubMedGoogle Scholar
  21. 21.
    Geerts BF, Aarts LP, Groeneveld AB, Jansen JR. Predicting cardiac output responses to passive leg raising by a PEEP-induced increase in central venous pressure, in cardiac surgery patients. Br J Anaesth. 2011;107(2):150–6. doi: 10.1093/bja/aer125.CrossRefPubMedGoogle Scholar
  22. 22.
    Guyton AC, Polizo D, Armstrong GG. Mean circulatory filling pressure measured immediately after cessation of heart pumping. Am J Physiol. 1954;179(2):261–7.PubMedGoogle Scholar
  23. 23.
    Guyton AC, Lindsey AW, Abernathy B, Richardson T. Venous return at various right atrial pressures and the normal venous return curve. Am J Physiol. 1957;189(3):609–15.PubMedGoogle Scholar
  24. 24.
    Geerts BF, Maas J, de Wilde RB, Aarts LP, Jansen JR. Arm occlusion pressure is a useful predictor of an increase in cardiac output after fluid loading following cardiac surgery. Eur J Anaesthesiol. 2011;28(11):802–6. doi: 10.1097/EJA.0b013e32834a67d2.CrossRefPubMedGoogle Scholar
  25. 25.
    Cecconi M, Aya HD, Geisen M, Ebm C, Fletcher N, Grounds RM, Rhodes A. Changes in the mean systemic filling pressure during a fluid challenge in postsurgical intensive care patients. Intensive Care Med. 2013;39(7):1299–305. doi: 10.1007/s00134-013-2928-6.CrossRefPubMedGoogle Scholar
  26. 26.
    Gupta K, Sondergaard S, Parkin G, Leaning M, Aneman A. Applying mean systemic filling pressure to assess the response to fluid boluses in cardiac post-surgical patients. Intensive Care Med. 2015;41(2):265–72. doi: 10.1007/s00134-014-3611-2.CrossRefPubMedGoogle Scholar
  27. 27.
    Jellinek H, Krenn H, Oczenski W, Veit F, Schwarz S, Fitzgerald RD. Influence of positive airway pressure on the pressure gradient for venous return in humans. J Appl Physiol. 2000;88(3):926–32.PubMedGoogle Scholar
  28. 28.
    Maas JJ, Pinsky MR, Geerts BF, de Wilde RB, Jansen JR. Estimation of mean systemic filling pressure in postoperative cardiac surgery patients with three methods. Intensive Care Med. 2012;38(9):1452–60. doi: 10.1007/s00134-012-2586-0.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Jansen JR, Maas JJ, Pinsky MR. Bedside assessment of mean systemic filling pressure. Curr Opin Crit Care. 2010;16(3):231–6. doi: 10.1097/MCC.0b013e3283378185.CrossRefPubMedGoogle Scholar
  30. 30.
    Maas JJ, Pinsky MR, Aarts LP, Jansen JR. Bedside assessment of total systemic vascular compliance, stressed volume, and cardiac function curves in intensive care unit patients. Anesth Analg. 2012;115(4):880–7. doi: 10.1213/ANE.0b013e31825fb01d.CrossRefPubMedGoogle Scholar
  31. 31.
    Robotham JL, Takata M, Berman M, Harasawa Y. Ejection fraction revisited. Anesthesiology. 1991;74(1):172–83.CrossRefPubMedGoogle Scholar
  32. 32.
    Atlas G, Li J-J, Kostis J. A comparison of mathematical models of left ventricular contractility derived from aortic blood flow velocity and acceleration: application to the esophageal doppler monitor. Biomed Eng Lett. 2014;4(3):301–15.CrossRefGoogle Scholar
  33. 33.
    Atlas GM. Development and application of a logistic-based systolic model for hemodynamic measurements using the esophageal Doppler monitor. Cardiovasc Eng. 2008;8(3):159–73. doi: 10.1007/s10558-008-9057-9.CrossRefPubMedGoogle Scholar
  34. 34.
    Boulnois JL, Pechoux T. Non-invasive cardiac output monitoring by aortic blood flow measurement with the Dynemo 3000. J Clin Monit Comput. 2000;16(2):127–40.CrossRefPubMedGoogle Scholar
  35. 35.
    Monnet X, Robert JM, Jozwiak M, Richard C, Teboul JL. Assessment of changes in left ventricular systolic function with oesophageal Doppler. Br J Anaesth. 2013;111(5):743–9. doi: 10.1093/bja/aet212.CrossRefPubMedGoogle Scholar
  36. 36.
    Atlas G, Berger J, Dhar S. Afterload assessment with or without central venous pressure: a preliminary clinical comparison. Cardiovasc Eng. 2010;10(4):246–52. doi: 10.1007/s10558-010-9113-0.CrossRefPubMedGoogle Scholar
  37. 37.
    Benson W, Harris JW, Stocher H, Lutz H. Handbook of physics. 1st ed. New York: Springer; 2002.CrossRefGoogle Scholar
  38. 38.
    Razminia M, Trivedi A, Molnar J, Elbzour M, Guerrero M, Salem Y, Ahmed A, Khosla S, Lubell DL. Validation of a new formula for mean arterial pressure calculation: the new formula is superior to the standard formula. Catheter Cardiovasc Interv. 2004;63(4):419–25. doi: 10.1002/ccd.20217.CrossRefPubMedGoogle Scholar
  39. 39.
    Atlas G, Brealey D, Dhar S, Dikta G, Singer M. Additional hemodynamic measurements with an esophageal Doppler monitor: a preliminary report of compliance, force, kinetic energy, and afterload in the clinical setting. J Clin Monit Comput. 2012;. doi: 10.1007/s10877-012-9386-5.PubMedGoogle Scholar
  40. 40.
    Atlas G, Li JK. Brachial artery differential characteristic impedance: contributions from changes in young’s modulus and diameter. Cardiovasc Eng. 2009;9(1):11–7. doi: 10.1007/s10558-009-9071-6.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Bernardo Bollen Pinto
    • 1
    Email author
  • Glen Atlas
    • 2
    • 3
  • Bart F. Geerts
    • 4
  • Karim Bendjelid
    • 1
  1. 1.Department of Anaesthesiology, Pharmacology, and Intensive CareGeneva University HospitalsGenevaSwitzerland
  2. 2.Department of AnaesthesiologyRutgers New Jersey Medical SchoolNewarkUSA
  3. 3.Department of Chemistry, Chemical Biology and Biomedical EngineeringStevens Institute of TechnologyHobokenUSA
  4. 4.Department of AnaesthesiologyAcademic Medical CentreAmsterdamThe Netherlands

Personalised recommendations