Skip to main content
Log in

Effective evaluation of arterial pulse waveform analysis by two-dimensional stroke volume variation–stroke volume index plots

  • Original Research
  • Published:
Journal of Clinical Monitoring and Computing Aims and scope Submit manuscript

Abstract

Arterial pulse waveform analysis (APWA) with a semi-invasive cardiac output monitoring device is popular in perioperative hemodynamic and fluid management. However, in APWA, evaluation of hemodynamic data is not well discussed. In this study, we analyzed how we visually interpret hemodynamic data, including stroke volume variation (SVV) and stroke volume (SV) derived from APWA. We performed arithmetic estimation of the SVV–SV relationship and applied measured values to this estimation. We then collected measured values in six anesthesia cases, including three liver transplantations and three other types of surgeries, to apply them to this SVV–SVI (stroke volume variation index) plot. Arithmetic analysis showed that the relationship between SVV and SV can be drawn as hyperbolic curves. Plotting SVV-SV values in the semi-logarithmic scale showed linear correlations, and the slopes of the linear regression lines theoretically represented average mean cardiac contractility. In clinical measurements in APWA, plotting SVV and SVI values in the linear scale and the semi-logarithmic scale showed the correlations represented by hyperbolic curves and linear regression lines. The plots approximately shifted on the rectangular hyperbolic curves, depending on blood loss and blood transfusion. Arithmetic estimation is close to real measurement of the SVV–SV interaction in hyperbolic curves. In APWA, using SVV as an index of preload and the cardiac index or SVI derived from arterial pressure-based cardiac output as an index of cardiac function, is likely to be appropriate for categorizing hemodynamic stages as a substitute for Forrester subsets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Breukers RM, Sepehrkhouy S, Spiegelenberg SR, Groeneveld AB. Cardiac output measured by a new arterial pressure waveform analysis method without calibration compared with thermodilution after cardiac surgery. J Cardiothorac Vasc Anesth. 2007;21:632–5. doi:10.1053/j.jvca.2007.01.001.

    Article  PubMed  Google Scholar 

  2. Button D, Weibel L, Reuthebuch O, Genoni M, Zollinger A, Hofer CK. Clinical evaluation of the FloTrac/Vigileo system and two established continuous cardiac output monitoring devices in patients undergoing cardiac surgery. Br J Anaesth. 2007;99:329–36. doi:10.1093/bja/aem188.

    Article  CAS  PubMed  Google Scholar 

  3. Cannesson M, Attof Y, Rosamel P, Joseph P, Bastien O, Lehot JJ. Comparison of FloTrac cardiac output monitoring system in patients undergoing coronary artery bypass grafting with pulmonary artery cardiac output measurements. Eur J Anaesthesiol. 2007;24:832–9. doi:10.1017/S0265021507001056.

    Article  CAS  PubMed  Google Scholar 

  4. Mayer J, Boldt J, Schollhorn T, Rohm KD, Mengistu AM, Suttner S. Semi-invasive monitoring of cardiac output by a new device using arterial pressure waveform analysis: a comparison with intermittent pulmonary artery thermodilution in patients undergoing cardiac surgery. Br J Anaesth. 2007;98:176–82. doi:10.1093/bja/ael341.

    Article  CAS  PubMed  Google Scholar 

  5. Opdam HI, Wan L, Bellomo R. A pilot assessment of the FloTrac cardiac output monitoring system. Intensive Care Med. 2007;33:344–9. doi:10.1007/s00134-006-0410-4.

    Article  PubMed  Google Scholar 

  6. Sakka SG, Kozieras J, Thuemer O, van Hout N. Measurement of cardiac output: a comparison between transpulmonary thermodilution and uncalibrated pulse contour analysis. Br J Anaesth. 2007;99:337–42. doi:10.1093/bja/aem177.

    Article  CAS  PubMed  Google Scholar 

  7. Suehiro K, Tanaka K, Matsuura T, Funao T, Yamada T, Mori T, Nishikawa K. The Vigileo-FloTrac system: arterial waveform analysis for measuring cardiac output and predicting fluid responsiveness: a clinical review. J Cardiothorac Vasc Anesth. 2014;28:1361–74. doi:10.1053/j.jvca.2014.02.020.

    Article  PubMed  Google Scholar 

  8. Correa-Gallego C, Tan KS, Arslan-Carlon V, Gonen M, Denis SC, Langdon-Embry L, Grant F, Kingham TP, DeMatteo RP, Allen PJ, D’Angelica MI, Jarnagin WR, Fischer M. Goal-directed fluid therapy using stroke volume variation for resuscitation after low central venous pressure-assisted liver resection: a randomized clinical trial. J Am Coll Surg. 2015;221:591–601. doi:10.1016/j.jamcollsurg.2015.03.050.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Jammer I, Tuovila M, Ulvik A. Stroke volume variation to guide fluid therapy: is it suitable for high-risk surgical patients? A terminated randomized controlled trial. Perioper Med (Lond). 2015;4:6. doi:10.1186/s13741-015-0016-x.

    Article  Google Scholar 

  10. Mutoh T, Ishikawa T, Kobayashi S, Suzuki A, Yasui N. Performance of third-generation FloTrac/Vigileo system during hyperdynamic therapy for delayed cerebral ischemia after subarachnoid hemorrhage. Surg Neurol Int. 2012;3:99. doi:10.4103/2152-7806.100195.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Scheeren TW, Wiesenack C, Gerlach H, Marx G. Goal-directed intraoperative fluid therapy guided by stroke volume and its variation in high-risk surgical patients: a prospective randomized multicentre study. J Clin Monit Comput. 2013;27:225–33. doi:10.1007/s10877-013-9461-6.

    Article  PubMed  Google Scholar 

  12. Tsai YF, Liu FC, Yu HP. FloTrac/Vigileo system monitoring in acute-care surgery: current and future trends. Expert Rev Med Devices. 2013;10:717–28. doi:10.1586/17434440.2013.844464.

    Article  CAS  PubMed  Google Scholar 

  13. Xia J, He Z, Cao X, Che X, Chen L, Zhang J, Liang W. The brain relaxation and cerebral metabolism in stroke volume variation-directed fluid therapy during supratentorial tumors resection: crystalloid solution versus colloid solution. J Neurosurg Anesthesiol. 2014;26:320–7. doi:10.1097/ANA.0000000000000046.

    Article  PubMed  Google Scholar 

  14. Zhang J, Chen CQ, Lei XZ, Feng ZY, Zhu SM. Goal-directed fluid optimization based on stroke volume variation and cardiac index during one-lung ventilation in patients undergoing thoracoscopy lobectomy operations: a pilot study. Clinics (Sao Paulo). 2013;68(7):1065–70. doi:10.6061/clinics/2013(07)27.

    Article  Google Scholar 

  15. Forrester JS, Diamond G, Swan HJ. Pulmonary artery catheterization. A new technique in treatment of acute myocardial infarction. Geriatrics. 1971;26:65–71.

    CAS  PubMed  Google Scholar 

  16. Forrester JS, Waters DD. Hospital treatment of congestive heart failure. Management according to hemodynamic profile. Am J Med. 1978;65:173–80.

    Article  CAS  PubMed  Google Scholar 

  17. Berkenstadt H, Margalit N, Hadani M, Friedman Z, Segal E, Villa Y, Perel A. Stroke volume variation as a predictor of fluid responsiveness in patients undergoing brain surgery. Anesth Analg. 2001;92:984–9.

    Article  CAS  PubMed  Google Scholar 

  18. Hofer CK, Muller SM, Furrer L, Klaghofer R, Genoni M, Zollinger A. Stroke volume and pulse pressure variation for prediction of fluid responsiveness in patients undergoing off-pump coronary artery bypass grafting. Chest. 2005;128:848–54. doi:10.1378/chest.128.2.848.

    Article  PubMed  Google Scholar 

  19. Hofer CK, Senn A, Weibel L, Zollinger A. Assessment of stroke volume variation for prediction of fluid responsiveness using the modified FloTrac and PiCCOplus system. Crit Care. 2008;12:R82. doi:10.1186/cc6933.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Marx G, Cope T, McCrossan L, Swaraj S, Cowan C, Mostafa SM, Wenstone R, Leuwer M. Assessing fluid responsiveness by stroke volume variation in mechanically ventilated patients with severe sepsis. Eur J Anaesthesiol. 2004;21:132–8.

    Article  CAS  PubMed  Google Scholar 

  21. Pinsky MR, Teboul JL. Assessment of indices of preload and volume responsiveness. Curr Opin Crit Care. 2005;11:235–9.

    Article  PubMed  Google Scholar 

  22. Reuter DA, Felbinger TW, Kilger E, Schmidt C, Lamm P, Goetz AE. Optimizing fluid therapy in mechanically ventilated patients after cardiac surgery by on-line monitoring of left ventricular stroke volume variations. Comparison with aortic systolic pressure variations. Br J Anaesth. 2002;88:124–6.

    Article  CAS  PubMed  Google Scholar 

  23. Reuter DA, Felbinger TW, Schmidt C, Kilger E, Goedje O, Lamm P, Goetz AE. Stroke volume variations for assessment of cardiac responsiveness to volume loading in mechanically ventilated patients after cardiac surgery. Intensive Care Med. 2002;28:392–8. doi:10.1007/s00134-002-1211-z.

    Article  PubMed  Google Scholar 

  24. Reuter DA, Kirchner A, Felbinger TW, Weis FC, Kilger E, Lamm P, Goetz AE. Usefulness of left ventricular stroke volume variation to assess fluid responsiveness in patients with reduced cardiac function. Crit Care Med. 2003;31:1399–404. doi:10.1097/01.CCM.0000059442.37548.E1.

    Article  PubMed  Google Scholar 

  25. Wiesenack C, Prasser C, Rodig G, Keyl C. Stroke volume variation as an indicator of fluid responsiveness using pulse contour analysis in mechanically ventilated patients. Anesth Analg. 2003;96:1254–7.

    Article  PubMed  Google Scholar 

  26. Yamashita K, Nishiyama T, Yokoyama T, Abe H, Manabe M. The effects of vasodilation on cardiac output measured by PiCCO. J Cardiothorac Vasc Anesth. 2008;22:688–92. doi:10.1053/j.jvca.2008.04.007.

    Article  PubMed  Google Scholar 

  27. Parker JO, Case RB. Normal left ventricular function. Circulation. 1979;60:4–12.

    Article  CAS  PubMed  Google Scholar 

  28. Diaz F, Erranz B, Donoso A, Salomon T, Cruces P. Influence of tidal volume on pulse pressure variation and stroke volume variation during experimental intra-abdominal hypertension. BMC Anesthesiol. 2015;15:127. doi:10.1186/s12871-015-0105-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Reuter DA, Bayerlein J, Goepfert MS, Weis FC, Kilger E, Lamm P, Goetz AE. Influence of tidal volume on left ventricular stroke volume variation measured by pulse contour analysis in mechanically ventilated patients. Intensive Care Med. 2003;29:476–80. doi:10.1007/s00134-003-1649-7.

    Article  PubMed  Google Scholar 

  30. Suehiro K, Okutani R. Influence of tidal volume for stroke volume variation to predict fluid responsiveness in patients undergoing one-lung ventilation. J Anesth. 2011;25:777–80. doi:10.1007/s00540-011-1200-x.

    Article  PubMed  Google Scholar 

  31. De Backer D, Heenen S, Piagnerelli M, Koch M, Vincent JL. Pulse pressure variations to predict fluid responsiveness: influence of tidal volume. Intensive Care Med. 2005;31:517–23. doi:10.1007/s00134-005-2586-4.

    Article  PubMed  Google Scholar 

  32. Michard F, Teboul JL, Richard C. Influence of tidal volume on stroke volume variation. Does it really matter? Intensive Care Med. 2003;29:1613. doi:10.1007/s00134-003-1886-9.

    Article  PubMed  Google Scholar 

  33. Perel A, Pizov R, Cotev S. Systolic blood pressure variation is a sensitive indicator of hypovolemia in ventilated dogs subjected to graded hemorrhage. Anesthesiology. 1987;67:498–502.

    Article  CAS  PubMed  Google Scholar 

  34. Rex S, Brose S, Metzelder S, Huneke R, Schalte G, Autschbach R, Rossaint R, Buhre W. Prediction of fluid responsiveness in patients during cardiac surgery. Br J Anaesth. 2004;93:782–8. doi:10.1093/bja/aeh280.

    Article  CAS  PubMed  Google Scholar 

  35. Szold A, Pizov R, Segal E, Perel A. The effect of tidal volume and intravascular volume state on systolic pressure variation in ventilated dogs. Intensive Care Med. 1989;15:368–71.

    Article  CAS  PubMed  Google Scholar 

  36. Connors AF Jr, Speroff T, Dawson NV, Thomas C, Harrell FE Jr, Wagner D, Desbiens N, Goldman L, Wu AW, Califf RM, Fulkerson WJ Jr, Vidaillet H, Broste S, Bellamy P, Lynn J, Knaus WA. The effectiveness of right heart catheterization in the initial care of critically ill patients. SUPPORT Investigators. JAMA. 1996;276:889–97.

    PubMed  Google Scholar 

  37. Marik PE. Obituary: pulmonary artery catheter 1970 to 2013. Ann Intensive Care. 2013;3:38. doi:10.1186/2110-5820-3-38.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Rajaram SS, Desai NK, Kalra A, Gajera M, Cavanaugh SK, Brampton W, Young D, Harvey S, Rowan K. Pulmonary artery catheters for adult patients in intensive care. Cochrane Database Syst Rev. 2013;2:CD003408. doi:10.1002/14651858.CD003408.pub3.

    Google Scholar 

  39. Xu F, Wang Q, Zhang H, Chen S, Ao H. Use of pulmonary artery catheter in coronary artery bypass graft. Costs and long-term outcomes. PLoS one. 2015;10:e0117610. doi:10.1371/journal.pone.0117610.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Angappan S, Parida S, Vasudevan A, Badhe AS. The comparison of stroke volume variation with central venous pressure in predicting fluid responsiveness in septic patients with acute circulatory failure. Indian J Crit Care Med. 2015;19:394–400. doi:10.4103/0972-5229.160278.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Auler JO Jr, Torres ML, Cardoso MM, Tebaldi TC, Schmidt AP, Kondo MM, Zugaib M. Clinical evaluation of the Flotrac/Vigileo system for continuous cardiac output monitoring in patients undergoing regional anesthesia for elective cesarean section: a pilot study. Clinics (Sao Paulo). 2010;65:793–8.

    Article  Google Scholar 

  42. Li J, Ji FH, Yang JP. Evaluation of stroke volume variation obtained by the FloTrac/Vigileo system to guide preoperative fluid therapy in patients undergoing brain surgery. J Int Med Res. 2012;40:1175–81.

    Article  CAS  PubMed  Google Scholar 

  43. Montenij LJ, Sonneveld JP, Nierich AP, Buhre WF, de Waal EE. Diagnostic accuracy of stroke volume variation measured with uncalibrated arterial waveform analysis for the prediction of fluid responsiveness in patients with impaired left ventricular function: a prospective, observational study. J Clin Monit Comput. 2015;. doi:10.1007/s10877-015-9743-2.

    PubMed  PubMed Central  Google Scholar 

  44. Slagt C, Malagon I, Groeneveld AB. Systematic review of uncalibrated arterial pressure waveform analysis to determine cardiac output and stroke volume variation. Br J Anaesth. 2014;112:626–37. doi:10.1093/bja/aet429.

    Article  CAS  PubMed  Google Scholar 

  45. Sotomi Y, Iwakura K, Higuchi Y, Abe K, Yoshida J, Masai T, Fujii K. The impact of systemic vascular resistance on the accuracy of the FloTrac/Vigileo system in the perioperative period of cardiac surgery: a prospective observational comparison study. J Clin Monit Comput. 2013;27:639–46. doi:10.1007/s10877-013-9481-2.

    Article  PubMed  Google Scholar 

  46. Sugasawa Y, Hayashida M, Yamaguchi K, Kajiyama Y, Inada E. Usefulness of stroke volume index obtained with the FloTrac/Vigileo system for the prediction of acute kidney injury after radical esophagectomy. Ann Surg Oncol. 2013;20:3992–8. doi:10.1245/s10434-013-3084-5.

    Article  PubMed  Google Scholar 

  47. Jardin F, Farcot JC, Gueret P, Prost JF, Ozier Y, Bourdarias JP. Cyclic changes in arterial pulse during respiratory support. Circulation. 1983;68:266–74.

    Article  CAS  PubMed  Google Scholar 

  48. de Waal EE, Rex S, Kruitwagen CL, Kalkman CJ, Buhre WF. Stroke volume variation obtained with FloTrac/Vigileo fails to predict fluid responsiveness in coronary artery bypass graft patients. Br J Anaesth. 2008;100:725–6. doi:10.1093/bja/aen061.

    Article  PubMed  Google Scholar 

  49. Wiesenack C, Fiegl C, Keyser A, Prasser C, Keyl C. Assessment of fluid responsiveness in mechanically ventilated cardiac surgical patients. Eur J Anaesthesiol. 2005;22:658–65.

    Article  CAS  PubMed  Google Scholar 

  50. Biais M, Nouette-Gaulain K, Cottenceau V, Revel P, Sztark F. Uncalibrated pulse contour-derived stroke volume variation predicts fluid responsiveness in mechanically ventilated patients undergoing liver transplantation. Br J Anaesth. 2008;101:761–8. doi:10.1093/bja/aen277.

    Article  CAS  PubMed  Google Scholar 

  51. Kim SH, Hwang GS, Kim SO, Kim YK. Is stroke volume variation a useful preload index in liver transplant recipients? A retrospective analysis. Int J Med Sci. 2013;10:751–7. doi:10.7150/ijms.6074.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Su BC, Tsai YF, Cheng CW, Yu HP, Yang MW, Lee WC, Lin CC. Stroke volume variation derived by arterial pulse contour analysis is a good indicator for preload estimation during liver transplantation. Transplant Proc. 2012;44:429–32. doi:10.1016/j.transproceed.2011.12.037.

    Article  CAS  PubMed  Google Scholar 

  53. Mason DT, Braunwald E, Covell JW, Sonnenblick EH, Ross J Jr. Assessment of cardiac contractility. The relation between the rate of pressure rise and ventricular pressure during isovolumic systole. Circulation. 1971;44:47–58.

    Article  CAS  PubMed  Google Scholar 

  54. Kijtawornrat A. Indices of Myocardial Contractility. Thai J Vet Med. 2013;43:167–78.

    Google Scholar 

Download references

Author’s contributions

Teiji Sawa played a main role in deciding on the study design, conducting the study, data collection, data analysis, and manuscript preparation. Teiji Sawa approved the final manuscript. Mao Kinoshita and Atsushi Kainuma performed data collection and data analysis of clinical cases. Koichi Akiyama, Yoshifumi Naito, Hideya Kato, and Fumimasa Amaya helped conduct the study and perform data analysis. Kenji Shigemi helped design the study and prepare the manuscript, and approved the final manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Teiji Sawa.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Research involving human participants

This project was approved and the requirement for written informed consent was waived by the institutional review board of Kyoto Prefectural University of Medicine.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplemental Movie File 1: case1.mov

SVV–SVI plots of case 1. Green, yellow, and red dots are from the pre-anhepatic, anhepatic, and post-hepatic stages, respectively. The reproduction speed is 4000 × . Supplementary material 1 (MOV 2740 kb)

Supplemental Movie File 2: case2.mov

SVV–SVI plots of case 2. Green, yellow, and red dots are from the pre-anhepatic, anhepatic, and post-hepatic stages, respectively. The reproduction speed is 3000 × . Supplementary material 2 (MOV 1709 kb)

Supplemental Movie File 3: case3.mov

SVV–SVI plots of case 3. Green, yellow, and red dots are from the pre-anhepatic, anhepatic, and post-hepatic stages, respectively. The reproduction speed is 3000 × . Supplementary material 3 (MOV 404 kb)

Supplemental Movie File 4: case4.mov

SVV–SVI plots of case 4. The reproduction speed is 300 × . Supplementary material 4 (MOV 905 kb)

Supplemental Movie File 5: case5.mov

SVV–SVI plots of case 5. The reproduction speed is 300 × . Green and red dots are from the pre- and post-resection of pheochromocytoma, respectively. Supplementary material 5 (MOV 592 kb)

Supplemental Movie File 6: case6.mov

SVV–SVI plots of case 6. The reproduction speed is 300 × . Green, yellow, blue, and red dots are from each stage (first stage: 3 h, 30 min; second stage: 3 h, 30 min; third stage: 3 h; and fourth stage: 1 h, 30 min), respectively. Supplementary material 6 (MOV 428 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sawa, T., Kinoshita, M., Kainuma, A. et al. Effective evaluation of arterial pulse waveform analysis by two-dimensional stroke volume variation–stroke volume index plots. J Clin Monit Comput 31, 927–941 (2017). https://doi.org/10.1007/s10877-016-9916-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10877-016-9916-7

Keywords

Navigation