Prediction of fluid responsiveness in the beach chair position using dynamic preload indices

Abstract

Hemodynamic instability in the beach chair position (BCP) may lead to adverse outcomes. Cardiac preload optimization is a prerequisite to improve hemodynamics. We evaluated the clinical usefulness of dynamic indices for the prediction of fluid responsiveness in BCP patients under general anesthesia. Forty-two patients in the BCP under mechanical ventilation received colloids at 6 ml/kg for 10 min. Stroke volume variation (SVV), pulse pressure variation (PPV), pleth variability index (PVI), and hemodynamic data were measured before and after the fluid challenge. Patients were considered responders to volume expansion if the stroke volume index increased by ≥15 %. The areas under receiver operating characteristic curves for SVV, PPV and PVI were 0.83, 0.81 and 0.74, respectively (p < 0.05), with the corresponding optimal cut-off values of 12, 15 and 10 %. SVV, PPV and PVI can be used to predict fluid responsiveness in the BCP under mechanical ventilation.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. 1.

    Porter JM, Pidgeon C, Cunningham AJ. The sitting position in neurosurgery: a critical appraisal. Br J Anaesth. 1999;82:117–28.

    CAS  Article  PubMed  Google Scholar 

  2. 2.

    Pant S, Bokor DJ, Low AK. Cerebral oxygenation using near-infrared spectroscopy in the beach-chair position during shoulder arthroscopy under general anesthesia. Arthroscopy. 2014;30:1520–7.

    Article  PubMed  Google Scholar 

  3. 3.

    Buhre W, Weyland A, Buhre K, et al. Effects of the sitting position on the distribution of blood volume in patients undergoing neurosurgical procedures. Br J Anaesth. 2000;84:354–7.

    CAS  Article  PubMed  Google Scholar 

  4. 4.

    Laflam A, Joshi B, Brady K, et al. Shoulder surgery in the beach chair position is associated with diminished cerebral autoregulation but no differences in postoperative cognition or brain injury biomarker levels compared with supine positioning: the anesthesia patient safety foundation beach chair study. Anesth Analg. 2015;120:176–85.

    Article  PubMed  PubMed Central  Google Scholar 

  5. 5.

    Boyd JH, Forbes J, Nakada TA, Walley KR, Russell JA. Fluid resuscitation in septic shock: a positive fluid balance and elevated central venous pressure are associated with increased mortality. Crit Care Med. 2011;39:259–65.

    Article  PubMed  Google Scholar 

  6. 6.

    Gan TJ, Soppitt A, Maroof M, et al. Goal-directed intraoperative fluid administration reduces length of hospital stay after major surgery. Anesthesiology. 2002;97:820–6.

    Article  PubMed  Google Scholar 

  7. 7.

    Marik PE, Cavallazzi R, Vasu T, Hirani A. Dynamic changes in arterial waveform derived variables and fluid responsiveness in mechanically ventilated patients: a systematic review of the literature. Crit Care Med. 2009;37:2642–7.

    Article  PubMed  Google Scholar 

  8. 8.

    Kumar A, Anel R, Bunnell E, et al. Pulmonary artery occlusion pressure and central venous pressure fail to predict ventricular filling volume, cardiac performance, or the response to volume infusion in normal subjects. Crit Care Med. 2004;32:691–9.

    Article  PubMed  Google Scholar 

  9. 9.

    Marik PE, Baram M, Vahid B. Does central venous pressure predict fluid responsiveness? a systematic review of the literature and the tale of seven mares. Chest. 2008;134:172–8.

    Article  PubMed  Google Scholar 

  10. 10.

    Biais M, Bernard O, Ha JC, Degryse C, Sztark F. Abilities of pulse pressure variations and stroke volume variations to predict fluid responsiveness in prone position during scoliosis surgery. Br J Anaesth. 2010;104:407–13.

    CAS  Article  PubMed  Google Scholar 

  11. 11.

    Chin JH, Lee EH, Hwang GS, Choi WJ. Prediction of fluid responsiveness using dynamic preload indices in patients undergoing robot-assisted surgery with pneumoperitoneum in the Trendelenburg position. Anaesth Intensive Care. 2013;41:515–22.

    CAS  PubMed  Google Scholar 

  12. 12.

    Song Y, Kwak YL, Song JW, Kim YJ, Shim JK. Respirophasic carotid artery peak velocity variation as a predictor of fluid responsiveness in mechanically ventilated patients with coronary artery disease. Br J Anaesth. 2014;113:61–6.

    CAS  Article  PubMed  Google Scholar 

  13. 13.

    Yang SY, Shim JK, Song Y, Seo SJ, Kwak YL. Validation of pulse pressure variation and corrected flow time as predictors of fluid responsiveness in patients in the prone position. Br J Anaesth. 2013;110:713–20.

    Article  PubMed  Google Scholar 

  14. 14.

    Vos JJ, Kalmar AF, Struys MM, Wietasch JK, Hendriks HG, Scheeren TW. Comparison of arterial pressure and plethysmographic waveform-based dynamic preload variables in assessing fluid responsiveness and dynamic arterial tone in patients undergoing major hepatic resection. Br J Anaesth. 2013;110:940–6.

    CAS  Article  PubMed  Google Scholar 

  15. 15.

    Sandroni C, Cavallaro F, Marano C, Falcone C, De Santis P, Antonelli M. Accuracy of plethysmographic indices as predictors of fluid responsiveness in mechanically ventilated adults: a systematic review and meta-analysis. Intensive Care Med. 2012;38:1429–37.

    Article  PubMed  Google Scholar 

  16. 16.

    Kim HK, Pinsky MR. Effect of tidal volume, sampling duration, and cardiac contractility on pulse pressure and stroke volume variation during positive-pressure ventilation. Crit Care Med. 2008;36:2858–62.

    Article  PubMed  PubMed Central  Google Scholar 

  17. 17.

    Liu Y, Wei LQ, Li GQ, Yu X, Li GF, Li YM. Pulse pressure variation adjusted by respiratory changes in pleural pressure, rather than by tidal volume, reliably predicts fluid responsiveness in patients with acute respiratory distress syndrome. Crit Care Med. 2015. doi:10.1097/CCM.0000000000001371.

  18. 18.

    Cannesson M, Desebbe O, Rosamel P, et al. Pleth variability index to monitor the respiratory variations in the pulse oximeter plethysmographic waveform amplitude and predict fluid responsiveness in the operating theatre. Br J Anaesth. 2008;101:200–6.

    CAS  Article  PubMed  Google Scholar 

  19. 19.

    Vieillard-Baron A, Chergui K, Augarde R, et al. Cyclic changes in arterial pulse during respiratory support revisited by Doppler echocardiography. Am J Respir Crit Care Med. 2003;168:671–6.

    Article  PubMed  Google Scholar 

  20. 20.

    Pinsky MR. The dynamic interface between hemodynamic variables and autonomic tone. Crit Care Med. 2005;33:2437–8.

    Article  PubMed  Google Scholar 

  21. 21.

    Jeong H, Jeong S, Lim HJ, Lee J, Yoo KY. Cerebral oxygen saturation measured by near-infrared spectroscopy and jugular venous bulb oxygen saturation during arthroscopic shoulder surgery in beach chair position under sevoflurane-nitrous oxide or propofol–remifentanil anesthesia. Anesthesiology. 2012;116:1047–56.

    CAS  Article  PubMed  Google Scholar 

  22. 22.

    Jo YY, Jung WS, Kim HS, Chang YJ, Kwak HJ. Prediction of hypotension in the beach chair position during shoulder arthroscopy using pre-operative hemodynamic variables. J Clin Monit Comput. 2014;28:173–8.

    Article  PubMed  Google Scholar 

  23. 23.

    Derichard A, Robin E, Tavernier B, et al. Automated pulse pressure and stroke volume variations from radial artery: evaluation during major abdominal surgery. Br J Anaesth. 2009;103:678–84.

    CAS  Article  PubMed  Google Scholar 

  24. 24.

    Zimmermann M, Feibicke T, Keyl C, et al. Accuracy of stroke volume variation compared with pleth variability index to predict fluid responsiveness in mechanically ventilated patients undergoing major surgery. Eur J Anaesthesiol. 2010;27:555–61.

    CAS  PubMed  Google Scholar 

  25. 25.

    Hood JA, Wilson RJ. Pleth variability index to predict fluid responsiveness in colorectal surgery. Anesth Analg. 2011;113:1058–63.

    Article  PubMed  Google Scholar 

  26. 26.

    Desgranges FP, Desebbe O, Ghazouani A, et al. Influence of the site of measurement on the ability of plethysmographic variability index to predict fluid responsiveness. Br J Anaesth. 2011;107:329–35.

    Article  PubMed  Google Scholar 

  27. 27.

    Desebbe O, Boucau C, Farhat F, Bastien O, Lehot JJ, Cannesson M. The ability of pleth variability index to predict the hemodynamic effects of positive end-expiratory pressure in mechanically ventilated patients under general anesthesia. Anesth Analg. 2010;110:792–8.

    Article  PubMed  Google Scholar 

  28. 28.

    Broch O, Bein B, Gruenewald M, et al. Accuracy of the pleth variability index to predict fluid responsiveness depends on the perfusion index. Acta Anaesthesiol Scand. 2011;55:686–93.

    CAS  Article  PubMed  Google Scholar 

  29. 29.

    Cannesson M, Le Manach Y, Hofer CK, et al. Assessing the diagnostic accuracy of pulse pressure variations for the prediction of fluid responsiveness: a “gray zone” approach. Anesthesiology. 2011;115:231–41.

    Article  PubMed  Google Scholar 

  30. 30.

    Biais M, Nouette-Gaulain K, Cottenceau V, Revel P, Sztark F. Uncalibrated pulse contour-derived stroke volume variation predicts fluid responsiveness in mechanically ventilated patients undergoing liver transplantation. Br J Anaesth. 2008;101:761–8.

    CAS  Article  PubMed  Google Scholar 

  31. 31.

    Kubitz JC, Annecke T, Forkl S, et al. Validation of pulse contour derived stroke volume variation during modifications of cardiac afterload. Br J Anaesth. 2007;98:591–7.

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT and Future Planning (NRF2014R1A1A3053428). We thank Ha Yan Kim and Jinae Lee from the Biostatistics Collaboration Unit, Yonsei University College of Medicine, Seoul, Korea, for assistance with statistical analysis.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Yong Seon Choi.

Ethics declarations

Conflict of interest

The authors report no conflict of interest concerning the materials or methods used in this study or the findings specified in this paper.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lee, S.H., Chun, YM., Oh, Y.J. et al. Prediction of fluid responsiveness in the beach chair position using dynamic preload indices. J Clin Monit Comput 30, 995–1002 (2016). https://doi.org/10.1007/s10877-015-9821-5

Download citation

Keywords

  • Beach chair position
  • Stroke volume variation
  • Pulse pressure variation
  • Pleth variability index
  • Fluid responsiveness