Skip to main content

Advertisement

Log in

Adaptive online monitoring for ICU patients by combining just-in-time learning and principal component analysis

  • Original Research
  • Published:
Journal of Clinical Monitoring and Computing Aims and scope Submit manuscript

Abstract

Offline general-type models are widely used for patients’ monitoring in intensive care units (ICUs), which are developed by using past collected datasets consisting of thousands of patients. However, these models may fail to adapt to the changing states of ICU patients. Thus, to be more robust and effective, the monitoring models should be adaptable to individual patients. A novel combination of just-in-time learning (JITL) and principal component analysis (PCA), referred to learning-type PCA (L-PCA), was proposed for adaptive online monitoring of patients in ICUs. JITL was used to gather the most relevant data samples for adaptive modeling of complex physiological processes. PCA was used to build an online individual-type model and calculate monitoring statistics, and then to judge whether the patient’s status is normal or not. The adaptability of L-PCA lies in the usage of individual data and the continuous updating of the training dataset. Twelve subjects were selected from the Physiobank’s Multi-parameter Intelligent Monitoring for Intensive Care II (MIMIC II) database, and five vital signs of each subject were chosen. The proposed method was compared with the traditional PCA and fast moving-window PCA (Fast MWPCA). The experimental results demonstrated that the fault detection rates respectively increased by 20 % and 47 % compared with PCA and Fast MWPCA. L-PCA is first introduced into ICU patients monitoring and achieves the best monitoring performance in terms of adaptability to changes in patient status and sensitivity for abnormality detection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Wartenberg KE, Schmidt JM, Mayer SA. Multimodality monitoring in neurocritical care. Crit Care Clin. 2007;23(3):507–39. doi:10.1016/j.ccc.2007.06.002.

    Article  CAS  PubMed  Google Scholar 

  2. Imhoff M, Bauer M, Gather U, Lohlein D. Statistical pattern detection in univariate time series of intensive care on-line monitoring data. Intensive Care Med. 1998;24(12):1305–14.

    Article  CAS  PubMed  Google Scholar 

  3. Staats C, Austin D, Aboy M. A statistical model and simulator for cardiovascular pressure signals. Proc Inst Mech Eng H. 2008;222(6):991–8.

    Article  CAS  PubMed  Google Scholar 

  4. Afessa B, Gajic O, Keegan MT. Severity of illness and organ failure assessment in adult intensive care units. Crit Care Clin. 2007;23(3):639–58. doi:10.1016/j.ccc.2007.05.004.

    Article  PubMed  Google Scholar 

  5. Moreno R, Vincent J-L, Matos R, Mendonça A, Cantraine F, Thijs L, Takala J, Sprung C, Antonelli M, Bruining H, Willatts S. The use of maximum SOFA score to quantify organ dysfunction/failure in intensive care. Results of a prospective, multicentre study. Intensive Care Med. 1999;25:686–96.

    Article  CAS  PubMed  Google Scholar 

  6. Leite CRM, Sizilio GRA, Neto ADD, Valentim RAM, Guerreiro AMG. A fuzzy model for processing and monitoring vital signs in ICU patients. Biomed Eng Online. 2011;. doi:10.1186/1475-925x-10-68.

    PubMed  PubMed Central  Google Scholar 

  7. Nicholas S, Giannareas AR, Kern V, Trevino AV, Fortino-Mullen M, King A, Lee I. Smart alarms: multivariate medical alarm integration for post CABG surgery patients. In: Proceedings of the 2nd ACM SIGHIT international health informatics symposium New York, NY, USA; 2012. p. 533–542.

  8. Douali N, Csaba H, De Roo J, Papageorgiou EI, Jaulent MC. Diagnosis support system based on clinical guidelines: comparison between case-based fuzzy cognitive maps and Bayesian networks. Comput Methods Programs Biomed. 2014;113(1):133–43. doi:10.1016/j.cmpb.2013.09.012.

    Article  PubMed  Google Scholar 

  9. Cismondi F, Horn AL, Fialho AS, Vieira SM, Reti SR, Sousa JMC, Finkelstein S. Multi-stage modeling using fuzzy multi-criteria feature selection to improve survival prediction of ICU septic shock patients. Expert Syst Appl. 2012;39(16):12332–9. doi:10.1016/j.eswa.2012.04.027.

    Article  Google Scholar 

  10. Becker K, Thull B, Kasmacher-Leidinger H, Stemmer J, Rau G, Kalff G, Zimmermann HJ. Design and validation of an intelligent patient monitoring and alarm system based on a fuzzy logic process model. Artif Intell Med. 1997;11(1):33–53.

    Article  CAS  PubMed  Google Scholar 

  11. Tsien CL, Kohane IS, McIntosh N. Multiple signal integration by decision tree induction to detect artifacts in the neonatal intensive care unit. Artif Intell Med. 2000;19(3):189–202.

    Article  CAS  PubMed  Google Scholar 

  12. Zhang Y, Szolovits P. Patient-specific learning in real time for adaptive monitoring in critical care. J Biomed Inform. 2008;41(3):452–60. doi:10.1016/j.jbi.2008.03.011.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Maglogiannis I, Zafiropoulos E, Platis A, Lambrinoudakis C. Risk analysis of a patient monitoring system using Bayesian network modeling. J Biomed Inform. 2006;39(6):637–47. doi:10.1016/j.jbi.2005.10.003.

    Article  CAS  PubMed  Google Scholar 

  14. Liu YX, Zhou WD, Yuan Q, Chen SS. Automatic Seizure detection using wavelet transform and SVM in long-term intracranial EEG. IEEE Trans Neural Syst Rehabil Eng. 2012;20(6):749–55. doi:10.1109/Tnsre.2012.2206054.

    Article  PubMed  Google Scholar 

  15. Abbod MF, Linkens DA, Mahfouf M, Dounias G. Survey on the use of smart and adaptive engineering systems in medicine. Artif Intell Med. 2002;26(3):179–209. doi:10.1016/S0933-3657(02)00083-0.

    Article  CAS  PubMed  Google Scholar 

  16. Alemzadeh H, Jin Z, Kalbarczyk Z, Iyer RK. An embedded reconfigurable architecture for patient-specific multi-paramater medical monitoring. In: Paper presented at the 33rd annual international conference of the IEEE EMBS, Boston, Massachusetts, USA, August 30–September 3; 2011.

  17. Klann JG, Szolovits P, Downs SM, Schadow G. Decision support from local data: creating adaptive order menus from past clinician behavior. J Biomed Inform. 2014;48:84–93. doi:10.1016/j.jbi.2013.12.005.

    Article  PubMed  Google Scholar 

  18. Imhoff M, Bauer M, Gather U, Lohlein D. Statistical pattern detection in univariate time series of intensive care on-line monitoring data. Intensive Care Med. 1998;24(12):1305–14.

    Article  CAS  PubMed  Google Scholar 

  19. Calvelo D, Chambrin MC, Pomorski D, Ravaux P. Towards symbolization using data-driven extraction of local trends for ICU monitoring. Artif Intell Med. 2000;19(3):203–23.

    Article  CAS  PubMed  Google Scholar 

  20. Charbonnier S, Gentil S. A trend-based alarm system to improve patient monitoring in intensive care units. Control Eng Pract. 2007;15(9):1039–50. doi:10.1016/j.conengprac.2006.12.005.

    Article  Google Scholar 

  21. Bichindaritz I, Marling C, Montani S. Preface for the special section on case-based reasoning in the health sciences. Expert Syst Appl. 2014;41(2):247–8. doi:10.1016/j.eswa.2013.05.062.

    Article  Google Scholar 

  22. Henriet J, Leni PE, Laurent R, Salomon M. Case-based reasoning adaptation of numerical representations of human organs by interpolation. Expert Syst Appl. 2014;41(2):260–6. doi:10.1016/j.eswa.2013.05.064.

    Article  Google Scholar 

  23. Guessoum S, Laskri MT, Lieber J. RESPIDIAG: a case-based reasoning system for the diagnosis of chronic obstructive pulmonary disease. Expert Syst Appl. 2014;41(2):267–73. doi:10.1016/j.eswa.2013.05.065.

    Article  Google Scholar 

  24. El-Fakdi A, Gamero F, Melendez J, Auffret V, Haigron P. eXiTCDSS: a framework for a workflow-based CBR for interventional Clinical Decision Support Systems and its application to TAVI. Expert Syst Appl. 2014;41(2):284–94. doi:10.1016/j.eswa.2013.05.067.

    Article  Google Scholar 

  25. Marling C, Montani S, Bichindaritz I, Funk P. Synergistic case-based reasoning in medical domains. Expert Syst Appl. 2014;41(2):249–59. doi:10.1016/j.eswa.2013.05.063.

    Article  Google Scholar 

  26. Cheng C, Chiu MS. Nonlinear process monitoring using JITL–PCA. Chemom Intell Lab Syst. 2005;76(1):1–13. doi:10.1016/j.chemolab.2004.08.003.

    Article  CAS  Google Scholar 

  27. Wang X, Kruger U, Irwin GW. Process monitoring approach using fast moving window PCA. Ind Eng Chem Res. 2005;44(15):5691–702. doi:10.1021/Ie048873f.

    Article  CAS  Google Scholar 

  28. Martis RJ, Acharya UR, Min LC. ECG beat classification using PCA, LDA, ICA and discrete wavelet transform. Biomed Signal Process Control. 2013;8(5):437–48.

    Article  Google Scholar 

  29. Stamkopoulos T, Diamantaras K, Maglaveras N, Strintzis M. ECG analysis using nonlinear PCA neural networks for ischemia detection. IEEE Trans Signal Process. 1998;46(11):3058–67.

    Article  Google Scholar 

  30. Qin SJ. Survey on data-driven industrial process monitoring and diagnosis. Annu Rev Control. 2012;36(2):220–34. doi:10.1016/j.arcontrol.2012.09.004.

    Article  Google Scholar 

  31. Liu XQ, Li K, McAfee M, Irwin GW. Improved nonlinear PCA for process monitoring using support vector data description. J Process Control. 2011;21(9):1306–17. doi:10.1016/j.jprocont.2011.07.003.

    Article  CAS  Google Scholar 

  32. Ramaker HJ, van Sprang ENM, Westerhuis JA, Smilde AK. The effect of the size of the training set and number of principal components on the false alarm rate in statistical process monitoring. Chemom Intell Lab Syst. 2004;73(2):181–7. doi:10.1016/j.chemolab.2003.12.015.

    Article  CAS  Google Scholar 

  33. Yue HH, Qin SJ. Reconstruction-based fault identification using a combined index. Ind Eng Chem Res. 2001;40(20):4403–14. doi:10.1021/Ie000141+.

    Article  CAS  Google Scholar 

  34. Saeed M, Villarroel M, Reisner AT, Clifford G, Lehman LW, Moody G, Heldt T, Kyaw TH, Moody B, Mark RG. Multiparameter intelligent monitoring in intensive care II: a public-access intensive care unit database. Crit Care Med. 2011;39(5):952–60. doi:10.1097/Ccm.0b013e31820a92c6.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Kannathal N, Acharya UR, Ng EYK, Krishnan SM, Min LC, Laxminarayan S. Cardiac health diagnosis using data fusion of cardiovascular and haemodynamic signals. Comput Methods Programs Biomed. 2006;82(2):87–96. doi:10.1016/j.cmpb.2006.01.009.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by National Natural Science Foundation of China (61374099), the Program for New Century Excellent Talents in University (NCET-13-0652), and Fundamental Research Funds for the Central Universities of China (YS1404).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Youqing Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Wang, Y. Adaptive online monitoring for ICU patients by combining just-in-time learning and principal component analysis. J Clin Monit Comput 30, 807–820 (2016). https://doi.org/10.1007/s10877-015-9778-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10877-015-9778-4

Keywords

Navigation