Skip to main content

Advertisement

Log in

Continuous-wave near-infrared spectroscopy is not related to brain tissue oxygen tension

  • Original Research
  • Published:
Journal of Clinical Monitoring and Computing Aims and scope Submit manuscript

Abstract

Near-infrared spectroscopy (NIRS) has gained acceptance for cerebral monitoring, especially during cardiac surgery, though there are few data showing its validity. We therefore aimed to correlate invasive brain tissue oxygen measurements (PtiO2) with the corresponding NIRS-values (regional oxygen saturation, rSO2). We also studied whether NIRS was able to detect ischemic events, defined as a PtiO2-value of <15 mmHg. Eleven patients were studied with invasive brain tissue oxygen monitoring and continuous-wave NIRS. PtiO2-correlation with corresponding NIRS-values was calculated. We found no correlation between PtiO2- and NIRS-readings. Measurement of rSO2 was no better than flipping a coin in the detection of cerebral ischemia when a commonly agreed ischemic PtiO2 cut-off value of <15 mmHg was chosen. Continuous-wave-NIRS was unable to reliably detect ischemic cerebral episodes, defined as a PtiO2 value <15 mmHg. Displayed NIRS-values did not correlate with invasively measured PtiO2-values. CW-NIRS should not be used for the detection of cerebral ischemia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Brain Trauma Foundation, Bratton SL, Chestnut RM, Ghajar J, McConnell Hammond FF, Harris OA, Hartl R, Manley GT, Nemecek A, Newell DW, Rosenthal G, Schouten J, Shutter L, Timmons SD, Ullman JS, Videtta W, Wilberger JE, Wright DW. Guidelines for the management of severe traumatic brain injury. VI. Indications for intracranial pressure monitoring. J Neurotrauma. 2007;24 Suppl 1:S37–44. doi:10.1089/neu.2007.9990.

    Google Scholar 

  2. NCC 2014 Annual Meeting Highlights. http://www.neurocriticalcare.org/news/2014-annual-meeting-highlights (2014). Accessed 05 July 2015.

  3. Narotam PK, Morrison JF, Nathoo N. Brain tissue oxygen monitoring in traumatic brain injury and major trauma: outcome analysis of a brain tissue oxygen-directed therapy. J Neurosurg. 2009;111(4):672–82. doi:10.3171/2009.4.JNS081150.

    Article  PubMed  Google Scholar 

  4. Brawanski A, Faltermeier R, Rothoerl RD, Woertgen C. Comparison of near-infrared spectroscopy and tissue p(O2) time series in patients after severe head injury and aneurysmal subarachnoid hemorrhage. J Cereb Blood Flow Metab Off J Int Soc Cereb Blood Flow Metab. 2002;22(5):605–11. doi:10.1097/00004647-200205000-00012.

    Article  Google Scholar 

  5. Leal-Noval SR, Cayuela A, Arellano-Orden V, Marin-Caballos A, Padilla V, Ferrandiz-Millon C, Corcia Y, Garcia-Alfaro C, Amaya-Villar R, Murillo-Cabezas F. Invasive and noninvasive assessment of cerebral oxygenation in patients with severe traumatic brain injury. Intensive Care Med. 2010;36(8):1309–17. doi:10.1007/s00134-010-1920-7.

    Article  CAS  PubMed  Google Scholar 

  6. Naidech AM, Bendok BR, Ault ML, Bleck TP. Monitoring with the Somanetics INVOS 5100C after aneurysmal subarachnoid hemorrhage. Neurocrit Care. 2008;9(3):326–31. doi:10.1007/s12028-008-9077-8.

    Article  PubMed  Google Scholar 

  7. Sorensen H, Rasmussen P, Siebenmann C, Zaar M, Hvidtfeldt M, Ogoh S, Sato K, Kohl-Bareis M, Secher NH, Lundby C. Extra-cerebral oxygenation influence on near-infrared-spectroscopy-determined frontal lobe oxygenation in healthy volunteers: a comparison between INVOS-4100 and NIRO-200NX. Clin Physiol Funct Imaging. 2014;. doi:10.1111/cpf.12142.

    Google Scholar 

  8. Nielsen HB. Systematic review of near-infrared spectroscopy determined cerebral oxygenation during non-cardiac surgery. Front Physiol. 2014;5:93. doi:10.3389/fphys.2014.00093.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Integra LifeScience Corp. Neuromonitoring Catalogue. http://www.integralife.com/eCatalogs/Neuro-monitoring/Neuromonitoring%20Catalog%20NS897-10_09.pdf (2014). Accessed 16 Apr 2014.

  10. NONIN Corp. EQUANOX ™ Model 7600 regional oximeter system regional oximetry with EQUANOX Classic Plus Sensor. http://www.noninequanox.com/adult_system.aspx (2014). Accessed 16 Apr 2014.

  11. Diaz-Arrastia R. Brain tissue oxygen monitoring in traumatic brain injury (TBI) (BOOST 2). http://clinicaltrials.gov/ct2/show/NCT00974259?term=boost+tbi&rank=1 (2014). Accessed 14 May 2014.

  12. Rosenthal G, Hemphill JC 3rd, Sorani M, Martin C, Morabito D, Obrist WD, Manley GT. Brain tissue oxygen tension is more indicative of oxygen diffusion than oxygen delivery and metabolism in patients with traumatic brain injury. Crit Care Med. 2008;36(6):1917–24. doi:10.1097/CCM.0b013e3181743d77.

    Article  CAS  PubMed  Google Scholar 

  13. Foresight Clinical Corner. CAS Medical Systems, Inc. http://www.casmed.com/foresight-clinical-corner (2014). Accessed 14 April 2014.

  14. Scheeren TW, Bendjelid K. Journal of clinical monitoring and computing 2014 end of year summary: near infrared spectroscopy (NIRS). J Clin Monit Comput. 2015;29(2):217–20. doi:10.1007/s10877-015-9689-4.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Buchner K, Meixensberger J, Dings J, Roosen K. Near-infrared spectroscopy—not useful to monitor cerebral oxygenation after severe brain injury. Zentralbl Neurochir. 2000;61(2):69–73.

    Article  CAS  PubMed  Google Scholar 

  16. McLeod AD, Igielman F, Elwell C, Cope M, Smith M. Measuring cerebral oxygenation during normobaric hyperoxia: a comparison of tissue microprobes, near-infrared spectroscopy, and jugular venous oximetry in head injury. Anesth Analg. 2003;97(3):851–6.

    Article  PubMed  Google Scholar 

  17. MacLeod DB, Ikeda K, Keifer J, Moretti E, Ames W. Validation of the CAS adult cerebral oximeter during hypoxia in healthy volunteers. Anesth Analg. 2006;102(S2):S162.

    Google Scholar 

  18. Bidd H, Tan A, Green D. Using bispectral index and cerebral oximetry to guide hemodynamic therapy in high-risk surgical patients. Perioper Med. 2013;2(1):11. doi:10.1186/2047-0525-2-11.

    Article  Google Scholar 

  19. Rubio A, Hakami L, Munch F, Tandler R, Harig F, Weyand M. Noninvasive control of adequate cerebral oxygenation during low-flow antegrade selective cerebral perfusion on adults and infants in the aortic arch surgery. J Card Surg. 2008;23(5):474–9. doi:10.1111/j.1540-8191.2008.00644.x.

    Article  PubMed  Google Scholar 

  20. Rosenthal G, Furmanov A, Itshayek E, Shoshan Y, Singh V. Assessment of a noninvasive cerebral oxygenation monitor in patients with severe traumatic brain injury. J Neurosurg. 2014;120(4):901–7. doi:10.3171/2013.12.JNS131089.

    Article  PubMed  Google Scholar 

  21. Macmillan CS, Andrews PJ. Cerebrovenous oxygen saturation monitoring: practical considerations and clinical relevance. Intensive Care Med. 2000;26(8):1028–36.

    Article  CAS  PubMed  Google Scholar 

  22. Gunn HCMB, Lam AM, Mayberg TS. Accuracy of continous jugular bulb venous oximetry during intracranial surgery. J Neurosurg Anesthesiol. 1995;7(3):174–7.

    Article  CAS  PubMed  Google Scholar 

  23. Gupta AK, Hutchinson PJ, Al-Rawi P, Gupta S, Swart M, Kirkpatrick PJ, Menon DK, Datta AK. Measuring brain tissue oxygenation compared with jugular venous oxygen saturation for monitoring cerebral oxygenation after traumatic brain injury. Anesth Analg. 1999;88(3):549–53.

    Article  CAS  PubMed  Google Scholar 

  24. Jeong H, Jeong S, Lim HJ, Lee J, Yoo KY. Cerebral oxygen saturation measured by near-infrared spectroscopy and jugular venous bulb oxygen saturation during arthroscopic shoulder surgery in beach chair position under sevoflurane-nitrous oxide or propofol-remifentanil anesthesia. Anesthesiology. 2012;116(5):1047–56. doi:10.1097/ALN.0b013e31825154d2.

    Article  CAS  PubMed  Google Scholar 

  25. Taussky P, O’Neal B, Daugherty WP, Luke S, Thorpe D, Pooley RA, Evans C, Hanel RA, Freeman WD. Validation of frontal near-infrared spectroscopy as noninvasive bedside monitoring for regional cerebral blood flow in brain-injured patients. Neurosurg Focus. 2012;32(2):E2. doi:10.3171/2011.12.FOCUS11280.

    Article  PubMed  Google Scholar 

  26. Ogoh S, Sato K, Okazaki K, Miyamoto T, Secher F, Sorensen H, Rasmussen P, Secher NH. A decrease in spatially resolved near-infrared spectroscopy-determined frontal lobe tissue oxygenation by phenylephrine reflects reduced skin blood flow. Anesth Analg. 2014;118(4):823–9. doi:10.1213/ANE.0000000000000145.

    Article  CAS  PubMed  Google Scholar 

  27. Davie SN, Grocott HP. Impact of extracranial contamination on regional cerebral oxygen saturation: a comparison of three cerebral oximetry technologies. Anesthesiology. 2012;116(4):834–40. doi:10.1097/ALN.0b013e31824c00d7.

    Article  CAS  PubMed  Google Scholar 

  28. Palmer S, Bader MK. Brain tissue oxygenation in brain death. Neurocrit Care. 2005;2(1):17–22. doi:10.1385/NCC:2:1:017.

    Article  PubMed  Google Scholar 

  29. Gomersall CD, Joynt GM, Gin T, Freebairn RC, Stewart IE. Failure of the INVOS 3100 cerebral oximeter to detect complete absence of cerebral blood flow. Crit Care Med. 1997;25(7):1252–4.

    Article  CAS  PubMed  Google Scholar 

  30. Gatto R, Hoffman W, Mueller M, Flores A, Valyi-Nagy T, Charbel FT. Frequency domain near-infrared spectroscopy technique in the assessment of brain oxygenation: a validation study in live subjects and cadavers. J Neurosci Methods. 2006;157(2):274–7. doi:10.1016/j.jneumeth.2006.04.013.

    Article  CAS  PubMed  Google Scholar 

  31. Lin PY, Roche-Labarbe N, Dehaes M, Carp S, Fenoglio A, Barbieri B, Hagan K, Grant PE, Franceschini MA. Non-invasive optical measurement of cerebral metabolism and hemodynamics in infants. J Vis Exp. 2013;73:e4379. doi:10.3791/4379.

    PubMed  Google Scholar 

  32. Blohm ME, Obrecht D, Hartwich J, Singer D. Effect of cerebral circulatory arrest on cerebral near-infrared spectroscopy in pediatric patients. Paediatr Anaesth. 2014;24(4):393–9. doi:10.1111/pan.12328.

    Article  PubMed  Google Scholar 

  33. Favilla CG, Mesquita RC, Mullen M, Durduran T, Lu X, Kim MN, Minkoff DL, Kasner SE, Greenberg JH, Yodh AG, Detre JA. Optical bedside monitoring of cerebral blood flow in acute ischemic stroke patients during head-of-bed manipulation. Stroke J Cereb Circ. 2014;45(5):1269–74. doi:10.1161/STROKEAHA.113.004116.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Kerz.

Ethics declarations

Ethical standard

The protocol for this study has been approved by the local ethics committee (Ethikkommission der Landesaerztekammer Rheinland-Pfalz). Upon hospitalization, all patients or their proxies agree to the use of their anonymized data for scientific purposes by signing the admission contract. Individual patient consent was not required for this study. The study was performed in compliance with the Helsinki Declaration.

Funding and conflict of interest

There has been no funding for this study. We have no conflicts of interest to report.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kerz, T., Beyer, C., Huthmann, A. et al. Continuous-wave near-infrared spectroscopy is not related to brain tissue oxygen tension. J Clin Monit Comput 30, 641–647 (2016). https://doi.org/10.1007/s10877-015-9755-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10877-015-9755-y

Keywords

Navigation