Tobin MJ. Advances in mechanical ventilation. N Engl J Med. 2001;344(26):1986–96. doi:10.1056/NEJM200106283442606.
CAS
PubMed
Article
Google Scholar
Auriant I, Reignier J, Pibarot ML, Bachat S, Tenaillon A, Raphael JC. Critical incidents related to invasive mechanical ventilation in the ICU: preliminary descriptive study. Intensive Care Med. 2002;28(4):452–8. doi:10.1007/s00134-002-1251-4.
CAS
PubMed
Article
Google Scholar
Randolph AG, Wypij D, Venkataraman ST, Hanson JH, Gedeit RG, Meert KL, Luckett PM, Forbes P, Lilley M, Thompson J, Cheifetz IM, Hibberd P, Wetzel R, Cox PN, Arnold JH. Effect of mechanical ventilator weaning protocols on respiratory outcomes in infants and children: a randomized controlled trial. JAMA. 2002;288(20):2561–8.
PubMed
Article
Google Scholar
Jouvet P, Farges C, Hatzakis G, Monir A, Lesage F, Dupic L, Brochard L, Hubert P. Weaning children from mechanical ventilation with a computer-driven system (closed-loop protocol): a pilot study. Pediatr Crit Care Med. 2007;8(5):425–32. doi:10.1097/01.PCC.0000282157.77811.F9.
PubMed
Article
Google Scholar
Leone M, Ragonnet B, Alonso S, Allaouchiche B, Constantin JM, Jaber S, Martin C, Fabbro-Peray P, Lefrant JY. Variable compliance with clinical practice guidelines identified in a 1-day audit at 66 French adult intensive care units. Crit Care Med. 2012;40(12):3189–95. doi:10.1097/CCM.0b013e31826571f2.
PubMed
Article
Google Scholar
Santschi M, Jouvet P, Leclerc F, Gauvin F, Newth CJ, Carroll CL, Flori H, Tasker RC, Rimensberger PC, Randolph AG. Acute lung injury in children: therapeutic practice and feasibility of international clinical trials. Pediatr Crit Care Med. 2010;11(6):681–9. doi:10.1097/PCC.0b013e3181d904c0.
PubMed
Article
Google Scholar
Khemani RG, Sward K, Morris A, Dean JM, Newth CJ. Variability in usual care mechanical ventilation for pediatric acute lung injury: the potential benefit of a lung protective computer protocol. Intensive Care Med. 2011;. doi:10.1007/s00134-011-2367-1.
PubMed Central
PubMed
Google Scholar
Rubenfeld GD. Implementing effective ventilator practice at the bedside. Curr Opin Crit Care. 2004;10(1):33–9.
PubMed
Article
Google Scholar
Morris AH. Developing and implementing computerized protocols for standardization of clinical decisions. Ann Intern Med. 2000;132(5):373–83.
CAS
PubMed
Article
Google Scholar
Rees SE. The Intelligent Ventilator (INVENT) project: the role of mathematical models in translating physiological knowledge into clinical practice. Comput Methods Program Biomed. 2011;104(Suppl 1):S1–29. doi:10.1016/s0169-2607(11)00307-5.
Article
Google Scholar
Laubscher TP, Heinrichs W, Weiler N, Hartmann G, Brunner JX. An adaptive lung ventilation controller. IEEE Trans Biomed Eng. 1994;41(1):51–9. doi:10.1109/10.277271.
CAS
PubMed
Article
Google Scholar
Jouvet P, Hernert P, Wysocki M. Development and implementation of explicit computerized protocols for mechanical ventilation in children. Ann Intensive Care. 2011;1(1):51. doi:10.1186/2110-5820-1-51.
PubMed Central
PubMed
Article
Google Scholar
Wyatt J. Computer-based knowledge systems. Lancet. 1991;338(8780):1431–6.
CAS
PubMed
Article
Google Scholar
Wysocki M, Brunner JX. Closed-loop ventilation: an emerging standard of care? Crit Care Clin. 2007;23(2):223–40. doi:10.1016/j.ccc.2006.12.011. ix.
PubMed
Article
Google Scholar
Lellouche F, Brochard L. Advanced closed loops during mechanical ventilation (PAV, NAVA, ASV, SmartCare). Best Pract Res Clin Anaesthesiol. 2009;23(1):81–93.
PubMed
Article
Google Scholar
Miller G. The magical number seven plus or minus two: some limits on our capacity for processing information. Psychol Rev. 1956;63:81–97.
CAS
PubMed
Article
Google Scholar
Higton P. Safety lessons from aviation. Perfusion. 2005;20:191–3.
PubMed
Article
Google Scholar
Lellouche F, Bouchard PA, Simard S, L’Her E, Wysocki M. Evaluation of fully automated ventilation: a randomized controlled study in post-cardiac surgery patients. Intensive Care Med. 2013;39(3):463–471.
Google Scholar
Esteban A, Ferguson ND, Meade MO, Frutos-Vivar F, Apezteguia C, Brochard L, Raymondos K, Nin N, Hurtado J, Tomicic V, Gonzalez M, Elizalde J, Nightingale P, Abroug F, Pelosi P, Arabi Y, Moreno R, Jibaja M, D’Empaire G, Sandi F, Matamis D, Montanez AM, Anzueto A. Evolution of mechanical ventilation in response to clinical research. Am J Respir Crit Care Med. 2008;177(2):170–7. doi:10.1164/rccm.200706-893OC.
PubMed
Article
Google Scholar
Gnaiger E (2008) Polarographic oxygen sensors, the oxygraph and high-resolution respirometry to assess mitochondrial function. In: Dykens JA, Will Y (eds) Mitochondrial dysfunction in drug-induced toxicity. Wiley, New Jersey, pp 327–352
Google Scholar
Claure N, Bancalari E, D’Ugard C, Nelin L, Stein M, Ramanathan R, Hernandez R, Donn SM, Becker M, Bachman T. Multicenter crossover study of automated control of inspired oxygen in ventilated preterm infants. Pediatrics. 2011;127(1):e76–83. doi:10.1542/peds.2010-0939.
PubMed
Article
Google Scholar
Jouvet P, Eddington A, Payen V, Bordessoule A, Emeriaud G, Lopez Gasco R, Wysocki M. A pilot prospective study on closed loop controlled ventilation and oxygenation in ventilated children during the weaning phase. Crit Care. 2012;16(3):R85.
Google Scholar
Olliver S, Davis GM, Hatzakis GE. Weaning infants with respiratory syncytial virus from mechanical ventilation through a fuzzy-logic controller. In: AMIA annual symposium proceedings/AMIA symposium. 2003. p. 499–503.
Bates JH, Young MP. Applying fuzzy logic to medical decision making in the intensive care unit. Am J Respir Crit Care Med. 2003;167(7):948–52. doi:10.1164/rccm.200207-777CP.
PubMed
Article
Google Scholar
Jamshidi M. Tools for intelligent control: fuzzy controllers, neural networks and genetic algorithms. Philos Transact A Math Phys Eng Sci. 2003;361(1809):1781–808. doi:10.1098/rsta.2003.1225.
Article
Google Scholar
Saxton GA Jr, Myers G. A servomechanism for automatic regulation of pulmonary ventilation. J Appl Physiol. 1957;11(2):326–8.
PubMed
Google Scholar
Beran AV, Taylor WF, Ackerman BD, Sperling DR, Strauss J. An automatic oxygen control system for infants. Pediatrics. 1971;48(2):315–8.
CAS
PubMed
Google Scholar
Beddis IR, Collins P, Levy NM, Godfrey S, Silverman M. New technique for servo-control of arterial oxygen tension in preterm infants. Arch Dis Child. 1979;54(4):278–80.
CAS
PubMed
Article
Google Scholar
Dugdale RE, Cameron RG, Lealman GT. Closed-loop control of the partial pressure of arterial oxygen in neonates. Clin Phys Physiol Meas. 1988;9(4):291–305.
CAS
PubMed
Article
Google Scholar
Urschitz MS, Horn W, Seyfang A, Hallenberger A, Herberts T, Miksch S, Popow C, Muller-Hansen I, Poets CF. Automatic control of the inspired oxygen fraction in preterm infants: a randomized crossover trial. Am J Respir Crit Care Med. 2004;170(10):1095–100. doi:10.1164/rccm.200407-929OC.
PubMed
Article
Google Scholar
Claure N, Gerhardt T, Everett R, Musante G, Herrera C, Bancalari E. Closed-loop controlled inspired oxygen concentration for mechanically ventilated very low birth weight infants with frequent episodes of hypoxemia. Pediatrics. 2001;107(5):1120–4.
CAS
PubMed
Article
Google Scholar
Claure N, D’Ugard C, Bancalari E. Automated adjustment of inspired oxygen in preterm infants with frequent fluctuations in oxygenation: a pilot clinical trial. J Pediatr. 2009;155(5):640–5. doi:10.1016/j.jpeds.2009.04.057. e641–e642.
PubMed
Article
Google Scholar
Johannigman JA, Branson RD, Edwards MG. Closed loop control of inspired oxygen concentration in trauma patients. J Am Coll Surg. 2009;208(5):763–8. doi:10.1016/j.jamcollsurg.2009.01.033. discussion 768–769.
PubMed
Article
Google Scholar
Ely EW, Baker AM, Dunagan DP, Burke HL, Smith AC, Kelly PT, Johnson MM, Browder RW, Bowton DL, Haponik EF. Effect on the duration of mechanical ventilation of identifying patients capable of breathing spontaneously. N Engl J Med. 1996;335(25):1864–9. doi:10.1056/nejm199612193352502.
CAS
PubMed
Article
Google Scholar
Jouvet P, Payen V, Gauvin F, Emeriaud G, lacroix J. Weaning children from mechanical ventilation with a computer-driven protocol: a pilot trial. Intensive Care Med. 2013 [Epub ahead of print]. doi:10.1007/s00134-013-2837-8
Lellouche F, Mancebo J, Jolliet P, Roeseler J, Schortgen F, Dojat M, Cabello B, Bouadma L, Rodriguez P, Maggiore S, Reynaert M, Mersmann S, Brochard L. A multicenter randomized trial of computer-driven protocolized weaning from mechanical ventilation. Am J Respir Crit Care Med. 2006;174(8):894–900. doi:10.1164/rccm.200511-1780OC.
PubMed
Article
Google Scholar
Rose L, Presneill JJ, Johnston L, Cade JF. A randomised, controlled trial of conventional versus automated weaning from mechanical ventilation using SmartCare/PS. Intensive Care Med. 2008;34(10):1788–95. doi:10.1007/s00134-008-1179-4.
PubMed
Article
Google Scholar
Schadler D, Engel C, Elke G, Pulletz S, Haake N, Frerichs I, Zick G, Scholz J, Weiler N. Automatic control of pressure support for ventilator weaning in surgical intensive care patients. Am J Respir Crit Care Med. 2012;185(6):637–44. doi:10.1164/rccm.201106-1127OC.
PubMed
Article
Google Scholar
Morato JB, Sakuma MT, Ferreira JC, Caruso P. Comparison of 3 modes of automated weaning from mechanical ventilation: a bench study. J Crit Care. 2012;27(6):741. doi:10.1016/j.jcrc.2011.12.021. e741–e748.
PubMed
Article
Google Scholar
Tassaux D, Dalmas E, Gratadour P, Jolliet P. Patient-ventilator interactions during partial ventilatory support: a preliminary study comparing the effects of adaptive support ventilation with synchronized intermittent mandatory ventilation plus inspiratory pressure support. Crit Care Med. 2002;30(4):801–7.
PubMed
Article
Google Scholar
Clavieras N, Wysocki M, Coisel Y, Galia F, Conseil M, Chanques G, Jung B, Arnal JM, Matecki S, Jaber S. Prospective randomized crossover study comparing a new-full closed loop control solution and pressure support ventilation during weaning from mechanical ventilation. Anesthesiology. 2013 (in press).
Drews FA, Westenskow DR. The right picture is worth a thousand numbers: data displays in anesthesia. Hum Factors. 2006;48(1):59–71.
PubMed
Article
Google Scholar
Wysocki M. Graphic user interface to improve patient safety during mechanical ventilation. Int J Intensive Care. 2007;14(1):2.
Google Scholar
Gorges M, Markewitz BA, Westenskow DR. Improving alarm performance in the medical intensive care unit using delays and clinical context. Anesth Analg. 2009;108(5):1546–52. doi:10.1213/ane.0b013e31819bdfbb.
PubMed
Article
Google Scholar
Keller JP, Diefes R, Graham K, Meyers M, Pelczarski K. Why clinical alarms are a ‘top ten’ hazard: how you can help reduce the risk. Biomed Instrum Technol. 2011; (Suppl):17–23. doi:10.2345/0899-8205-45.s1.17.
Prasad M, Holmboe ES, Lipner RS, Hess BJ, Christie JD, Bellamy SL, Rubenfeld GD, Kahn JM. Clinical protocols and trainee knowledge about mechanical ventilation. JAMA. 2011;306(9):935–41. doi:10.1001/jama.2011.1226.
CAS
PubMed
Article
Google Scholar
Flechelles O, Ho A, Hernert P, Emeriaud G, Zaglam N, Cheriet F, Jouvet PA. Simulations for mechanical ventilation in children: review and future prospects. Crit Care Res Pract. 2013;2013:943281. doi:10.1155/2013/943281
Google Scholar
Borycki EM, Kushniruk A, Keay E, Nicoll J, Anderson J, Anderson M. Toward an integrated simulation approach for predicting and preventing technology-induced errors in healthcare: implications for healthcare decision-makers. Healthcare Q. 2009;12(Spec No Patient):90–6.
Article
Google Scholar