Cardiac output monitoring in septic shock: evaluation of the third-generation Flotrac-Vigileo®

  • Sophie MarquéEmail author
  • Antoine Gros
  • Loic Chimot
  • Arnaud Gacouin
  • Sylvain Lavoué
  • Christophe Camus
  • Yves Le Tulzo
Original Research


Continuous cardiac index (CI) monitoring is frequently used in critically ill patients. Few studies have compared the pulse contour-based device FloTrac/Vigileo® to pulmonary artery thermodilution (PAC) in terms of accuracy for CI monitoring in septic shock. The aim of our study was to compare the third-generation FloTrac/Vigileo® to PAC in septic shock. Eighteen patients with septic shock requiring monitoring by PAC were included in this study. We monitored CI using both FloTrac/Vigileo® and continuous thermodilution (PAC-CI). Hemodynamic data were recorded every hour or every 2 min during fluid challenges. The primary endpoint was the global agreement of all CI-paired measurements determined using the Bland–Altman method adapted to replicated data. We tested the linearity of the bias by regression analysis, and compared the reactivity of the 2 techniques during fluid challenges. A receiver operating characteristic (ROC) curve analysis tested the ability of FloTrac/Vigileo® to detect concordant and significative CI changes, using PAC-CI as the reference method. Overall, 1,201 paired CI measurements were recorded. The Bland–Altman analysis for global agreement of the 2 techniques showed a bias of −0.1 ± 2.1 L min−1 m−2 and a percentage error of 64 %. The overall correlation coefficient between PAC-CI and FloTrac/Vigileo® CI was 0.47 (p < 0.01), with r2 = 0.22. The area under the curve of the ROC curve for detecting concordant and significant changes in CI was 0.72 (0.53; 0.87). In our study, third-generation Flowtrac-Vigileo® appears to be too inaccurate to be recommended for CI monitoring in septic shock.


Cardiac output Pulse contour analysis Septic shock Critically ill patients 



Edwards Lifesciences SAS (France) provided the FloTrac® sensor kits and loaned the Vigileo® monitor used in the study.

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical Standards

This clinical study complies with the French current laws. It was approved by the Ethical Committee of the French Society of Intensive Care Medicine (SRLF), which waived the need for informed patient consent (Ref 08/241).


  1. 1.
    van Lieshout JJ, Wesseling KH. Continuous cardiac output by pulse contour analysis? Br J Anaesth. 2001;86:467–9.PubMedCrossRefGoogle Scholar
  2. 2.
    Pearse RM, Ikram K, Barry J. Equipment review: an appraisal of the LiDCO plus method of measuring cardiac output. Crit Care. 2004;8:190–5.PubMedCrossRefGoogle Scholar
  3. 3.
    Squara P, Denjean D, Estagnasie P, Brusset A, Dib JC, Dubois C. Noninvasive cardiac output monitoring (NICOM): a clinical validation. Intensive Care Med. 2007;33:1191–4.PubMedCrossRefGoogle Scholar
  4. 4.
    Manecke GR, Auger WR. Cardiac output determination from the arterial pressure wave: clinical testing of a novel algorithm that does not require calibration. J Cardiothorac Vasc Anesth. 2007;21:3–7.PubMedCrossRefGoogle Scholar
  5. 5.
    Sander M, Spies CD, Grubitzsch H, Foer A, Muller M, von Heymann C. Comparison of uncalibrated arterial waveform analysis in cardiac surgery patients with thermodilution cardiac output measurements. Crit Care. 2006;10:R164.PubMedCrossRefGoogle Scholar
  6. 6.
    Opdam HI, Wan L, Bellomo R. A pilot assessment of the FloTrac cardiac output monitoring system. Intensive Care Med. 2007;33:344–9.PubMedCrossRefGoogle Scholar
  7. 7.
    Compton FD, Zukunft B, Hoffmann C, Zidek W, Schaefer JH. Performance of a minimally invasive uncalibrated cardiac output monitoring system (Flotrac/Vigileo) in haemodynamically unstable patients. Br J Anaesth. 2008;100:451–6.PubMedCrossRefGoogle Scholar
  8. 8.
    Slagt C, Beute J, Hoeksema M, Malagon I, Mulder JW, Groeneveld JA. Cardiac output derived from arterial pressure waveform analysis without calibration versus thermodilution in septic shock: evolving accuracy of software versions. Eur J Anaesthesiol. 2010;27:550–4.PubMedCrossRefGoogle Scholar
  9. 9.
    Monnet X, Anguel N, Naudin B, Jabot J, Richard C, Teboul JL. Arterial pressure-based cardiac output in septic patients: different accuracy of pulse contour and uncalibrated pressure waveform devices. Crit Care. 2010;14:R109.PubMedCrossRefGoogle Scholar
  10. 10.
    Krejci V, Vannucci A, Abbas A, Chapman W, Kangrga IM. Comparison of calibrated and uncalibrated arterial pressure-based cardiac output monitors during orthotopic liver transplantation. Liver Transpl. 2010;16:773–82.PubMedGoogle Scholar
  11. 11.
    Biancofiore G, Critchley LA, Lee A, Yang XX, Bindi LM, Esposito M, Bisa M, Meacci L, Mozzo R, Filipponi F. Evaluation of a new software version of the FloTrac/Vigileo (version 3.02) and a comparison with previous data in cirrhotic patients undergoing liver transplant surgery. Anesth Analg. 2011;113:515–22.PubMedGoogle Scholar
  12. 12.
    Levy MM, Fink MP, Marshall JC, Abraham E, Angus D, Cook D, Cohen J, Opal SM, Vincent JL, Ramsay G. 2001 SCCM/ESICM/ACCP/ATS/SIS international sepsis definitions conference. Crit Care Med. 2003;31:1250–6.Google Scholar
  13. 13.
    Le Gall JR, Klar J, Lemeshow S, Saulnier F, Alberti C, Artigas A, Teres D. The logistic organ dysfunction system. A new way to assess organ dysfunction in the intensive care unit. JAMA. 1996;276:802–10.PubMedCrossRefGoogle Scholar
  14. 14.
    Vincent JL, Moreno R, Takala J, Willatts S, De Mendonca A, Bruining H, Reinhart CK, Suter PM, Thijs LG. The SOFA (sepsis-related organ failure assessment) score to describe organ dysfunction/failure. Intensive Care Med. 1996;22:707–10.PubMedCrossRefGoogle Scholar
  15. 15.
    Bland JM, Altman DG. Measuring agreement in method comparison studies. Stat Methods Med Res. 1999;8:135–60.PubMedCrossRefGoogle Scholar
  16. 16.
    Critchley LA, Critchley JA. A meta-analysis of studies using bias and precision statistics to compare cardiac output measurement techniques. J Clin Monit Comput. 1999;15:85–91.PubMedCrossRefGoogle Scholar
  17. 17.
    Mehta Y, Chand RK, Sawhney R, Bhise M, Singh A, Trehan N. Cardiac output monitoring: comparison of a new arterial pressure waveform analysis to the bolus thermodilution technique in patients undergoing off-pump coronary artery bypass surgery. J Cardiothorac Vasc Anesth. 2008;22:394–9.PubMedCrossRefGoogle Scholar
  18. 18.
    Senn A, Button D, Zollinger A, Hofer CK. Assessment of cardiac output changes using a modified FloTrac/Vigileo algorithm in cardiac surgery patients. Crit Care. 2009;13:R32.PubMedCrossRefGoogle Scholar
  19. 19.
    Sakka SG, Kozieras J, Thuemer O, van Hout N. Measurement of cardiac output: a comparison between transpulmonary thermodilution and uncalibrated pulse contour analysis. Br J Anaesth. 2007;99:337–42.PubMedCrossRefGoogle Scholar
  20. 20.
    Biancofiore G, Critchley LA, Lee A, Bindi L, Bisa M, Esposito M, Meacci L, Mozzo R, DeSimone P, Urbani L, et al. Evaluation of an uncalibrated arterial pulse contour cardiac output monitoring system in cirrhotic patients undergoing liver surgery. Br J Anaesth. 2009;102:47–54.PubMedCrossRefGoogle Scholar
  21. 21.
    Della Rocca G, Costa MG, Chiarandini P, Bertossi G, Lugano M, Pompei L, Coccia C, Sainz-Barriga M, Pietropaoli P. Arterial pulse cardiac output agreement with thermodilution in patients in hyperdynamic conditions. J Cardiothorac Vasc Anesth. 2008;22:681–7.PubMedCrossRefGoogle Scholar
  22. 22.
    Biais M, Nouette-Gaulain K, Cottenceau V, Revel P, Sztark F. Uncalibrated pulse contour-derived stroke volume variation predicts fluid responsiveness in mechanically ventilated patients undergoing liver transplantation. Br J Anaesth. 2008;101:761–8.PubMedCrossRefGoogle Scholar
  23. 23.
    De Backer D, Marx G, Tan A, Junker C, Van Nuffelen M, Huter L, Ching W, Michard F, Vincent JL. Arterial pressure-based cardiac output monitoring: a multicenter validation of the third-generation software in septic patients. Intensive Care Med. 2011;37:233–40.PubMedCrossRefGoogle Scholar
  24. 24.
    Akiyoshi K, Kandabashi T, Kaji J, Yamaura K, Yoshimura H, Irita K, Hoka S. Accuracy of arterial pressure waveform analysis for cardiac output measurement in comparison with thermodilution methods in patients undergoing living donor liver transplantation. J Anesth. 2011;25:178–83.PubMedCrossRefGoogle Scholar
  25. 25.
    Metzelder S, Coburn M, Fries M, Reinges M, Reich S, Rossaint R, Marx G, Rex S. Performance of cardiac output measurement derived from arterial pressure waveform analysis in patients requiring high-dose vasopressor therapy. Br J Anaesth. 2011;106:776–84.PubMedCrossRefGoogle Scholar
  26. 26.
    Squara P, Rotcajg D, Denjean D, Estagnasie P, Brusset A. Comparison of monitoring performance of Bioreactance vs. pulse contour during lung recruitment maneuvers. Crit Care. 2009;13:R125.PubMedCrossRefGoogle Scholar
  27. 27.
    Monnet X, Anguel N, Jozwiak M, Richard C, Teboul JL. Third-generation FloTrac/Vigileo does not reliably track changes in cardiac output induced by norepinephrine in critically ill patients. Br J Anaesth. 2012;108:615–22.PubMedCrossRefGoogle Scholar
  28. 28.
    Yelderman M. Continuous measurement of cardiac output with the use of stochastic system identification techniques. J Clin Monit. 1990;6:322–32.PubMedCrossRefGoogle Scholar
  29. 29.
    Greim CA, Roewer N, Thiel H, Laux G, Schulte am Esch J. Continuous cardiac output monitoring during adult liver transplantation: thermal filament technique versus bolus thermodilution. Anesth Analg. 1997;85:483–8.PubMedGoogle Scholar
  30. 30.
    Haller M, Zollner C, Briegel J, Forst H. Evaluation of a new continuous thermodilution cardiac output monitor in critically ill patients: a prospective criterion standard study. Crit Care Med. 1995;23:860–6.PubMedCrossRefGoogle Scholar
  31. 31.
    Mihaljevic T, von Segesser LK, Tonz M, Leskosek B, Seifert B, Jenni R, Turina M. Continuous versus bolus thermodilution cardiac output measurements: a comparative study. Crit Care Med. 1995;23:944–9.PubMedCrossRefGoogle Scholar
  32. 32.
    Jacquet L, Hanique G, Glorieux D, Matte P, Goenen M. Analysis of the accuracy of continuous thermodilution cardiac output measurement. Comparison with intermittent thermodilution and Fick cardiac output measurement. Intensive Care Med. 1996;22:1125–9.PubMedCrossRefGoogle Scholar
  33. 33.
    Le Tulzo Y, Belghith M, Seguin P, Dall’Ava J, Monchi M, Thomas R, Dhainaut JF. Reproducibility of thermodilution cardiac output determination in critically ill patients: comparison between bolus and continuous method. J Clin Monit. 1996;12:379–85.PubMedCrossRefGoogle Scholar
  34. 34.
    Spöhr F, Hettrich P, Bauer H, Haas U, Martin E, Böttiger BW. Comparison of two methods for enhanced continuous circulatory monitoring in patients with septic shock. Intensive Care Med. 2007;33:1805–10.PubMedCrossRefGoogle Scholar
  35. 35.
    Yang XX, Critchley LA, Joynt GM. Determination of the precision error of the pulmonary artery thermodilution catheter using an in vitro continuous flow test rig. Anesth Analg. 2011;112:70–7.PubMedCrossRefGoogle Scholar
  36. 36.
    Peyton PJ, Chong SW. Minimally invasive measurement of cardiac output during surgery and critical care: a meta-analysis of accuracy and precision. Anesthesiology. 2010;113:1220–35.PubMedCrossRefGoogle Scholar
  37. 37.
    Myles PS, Cui J. Using the Bland-Altman method to measure agreement with repeated measures. Br J Anaesth. 2007;99:309–11.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Sophie Marqué
    • 1
    Email author
  • Antoine Gros
    • 2
  • Loic Chimot
    • 3
  • Arnaud Gacouin
    • 3
  • Sylvain Lavoué
    • 3
  • Christophe Camus
    • 3
  • Yves Le Tulzo
    • 3
    • 4
  1. 1.Service de Réanimation Médico-ChirurgicaleCentre Hospitalier Sud FrancilienCorbeil EssonnesFrance
  2. 2.Service de Réanimation Médico-ChirurgicaleCentre Hospitalier de VersaillesLe ChesnayFrance
  3. 3.Service de Réanimation Médicale et des Maladies InfectieusesCentre Hospitalier Universitaire de RennesRennesFrance
  4. 4.INSERM 0203, Université Rennes 1RennesFrance

Personalised recommendations