Skip to main content

Advertisement

Log in

The transpulmonary thermodilution technique

  • Invited Review
  • Published:
Journal of Clinical Monitoring and Computing Aims and scope Submit manuscript

Abstract

The transpulmonary thermodilution technique (TPTD) is a safe, multi-parametric advanced cardiopulmonary monitoring technique that provides important parameters required for making decisions in critically ill patients. The TPTD provides more reliable indicators of preload than filling pressures, the unique measurement of extravascular lung water (EVLW) and comparable accuracy in measuring cardiac output (CO). Intermittent measurement of the CO by TPTD when coupled with pulse contour analysis, offer automatic calibration of continuous CO, as well as accurate assessment of volumetric preload, fluid responsiveness and EVLW. TPTD-guided algorithms have been shown to improve the management of high-risk surgical and critically ill patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Vincent JL, Rhodes A, Perel A, Martin GS, Della Rocca G, Vallet B, Pinsky MR, Hofer CK, Teboul JL, de Boode WP, Scolletta S, Vieillard-Baron A, De Backer D, Walley KR, Maggiorini M, Singer M. Clinical review: update on hemodynamic monitoring—a consensus of 16. Crit Care. 2011;15:229.

    Article  PubMed  Google Scholar 

  2. Cannesson M, Pestel G, Ricks C, Hoeft A, Perel A. Hemodynamic monitoring and management in patients undergoing high risk surgery: a survey among North American and European anesthesiologists. Crit Care. 2011;15:R197.

    Article  PubMed  Google Scholar 

  3. Eichhorn V, Goepfert MS, Eulenburg C, Malbrain ML, Reuter DA. Comparison of values in critically ill patients for global end-diastolic volume and extravascular lung water measured by transcardiopulmonary thermodilution: a metaanalysis of the literature. Med Intensiva. 2012. (epub ahead).

  4. Belda FJ, Aguilar G, Teboul JL, Pestaña D, Redondo FJ, Malbrain M, Luis JC, Ramasco F, Umgelter A, Wendon J, Kirov M, Fernández-Mondéjar E, PICS Investigators Group. Complications related to less-invasive haemodynamic monitoring. Br J Anaesth. 2011;106:482–6.

    Article  PubMed  CAS  Google Scholar 

  5. Bendjelid K, Giraud R, Siegenthaler N, Michard F. Validation of a new transpulmonary thermodilution system to assess global end-diastolic volume and extravascular lung water. Crit Care. 2010;14:R209.

    Article  PubMed  Google Scholar 

  6. Kiefer N, Hofer CK, Marx G, Geisen M, Giraud R, Siegenthaler N, Hoeft A, Bendjelid K, Rex S. Clinical validation of a new thermodilution system for the assessment of cardiac output and volumetric parameters. Crit Care. 2012;16:R98.

    Article  PubMed  Google Scholar 

  7. Sakka SG, Rühl CC, Pfeiffer UJ, Beale R, McLuckie A, Reinhart K, Meier-Hellmann A. Assessment of cardiac preload and extravascular lung water by single transpulmonary thermodilution. Intensive Care Med. 2000;26:180–7.

    Article  PubMed  CAS  Google Scholar 

  8. Böck JC, Barker BC, Mackersie RC, Tranbaugh RF. Cardiac output measurements using femoral artery thermodilution in patients. J Crit Care. 1989;4:106–11.

    Article  Google Scholar 

  9. Sakka SG, Reinhart K, Meier-Hellmann A. Comparison of pulmonary artery and arterial thermodilution cardiac output in critically ill patients. Intensive Care Med. 1999;25:843–6.

    Article  PubMed  CAS  Google Scholar 

  10. Faybik P, Hetz H, Baker A, Yankovskaya E, Krenn CG, Steltzer H. Iced versus room temperature injectate for assessment of cardiac output, intrathoracic blood volume, and extravascular lung water by single transpulmonary thermodilution. J Crit Care. 2004;19:103–7.

    Article  PubMed  Google Scholar 

  11. Segal E, Katzenelson R, Berkenstadt H, Perel A. Transpulmonary thermodilution cardiac output measurement using the axillary artery in critically ill patients. J Clin Anesth. 2002;14:210–3.

    Article  PubMed  Google Scholar 

  12. van den Berg PC, Grimbergen CA, Spaan JA, Pinsky MR. Positive pressure inspiration differentially affects right and left ventricular outputs in postoperative cardiac surgery patients. J Crit Care. 1997;12:56–65.

    Article  PubMed  Google Scholar 

  13. Pohl T, Kozieras J, Sakka SG. Influence of extravascular lung water on transpulmonary thermodilution-derived cardiac output measurement. Intensive Care Med. 2008;34:533–7.

    Article  PubMed  Google Scholar 

  14. Tagami T, Kushimoto S, Tosa R, Omura M, Hagiwara J, Hirama H, Yokota H. The precision of PiCCO® measurements in hypothermic post-cardiac arrest patients. Anaesthesia. 2012;67:236–43.

    Article  PubMed  CAS  Google Scholar 

  15. Felbinger TW, Reuter DA, Eltzschig HK, Bayerlein J, Goetz AE. Cardiac index measurements during rapid preload changes: a comparison of pulmonary artery thermodilution with arterial pulse contour analysis. J Clin Anesth. 2005;17:241–8.

    Article  PubMed  Google Scholar 

  16. Tibby SM, Hatherill M, Marsh MJ, Morrison G, Anderson D, Murdoch IA. Clinical validation of cardiac output measurements using femoral artery thermodilution with direct Fick in ventilated children and infants. Intensive Care Med. 1997;23:987–91.

    Article  PubMed  CAS  Google Scholar 

  17. Trepte C, Haas S, Meyer N, Gebhardt M, Goepfert MS, Goetz AE, Reuter DA. Effects of one-lung ventilation on thermodilution-derived assessment of cardiac output. Br J Anaesth. 2012;108:922–8.

    Article  PubMed  CAS  Google Scholar 

  18. Sakka SG, Hanusch T, Thuemer O, Wegscheider K. The influence of venovenous renal replacement therapy on measurements by the transpulmonary thermodilution technique. Anesth Analg. 2007;105:1079–82.

    Article  PubMed  Google Scholar 

  19. Michard F, Alaya S, Medkour F. Monitoring right-to-left intracardiac shunt in acute respiratory distress syndrome. Crit Care Med. 2004;32:308–9.

    Article  PubMed  Google Scholar 

  20. Keller G, Desebbe O, Henaine R, Lehot JJ. Transpulmonary thermodilution in a pediatric patient with an intracardiac left-to-right shunt. J Clin Monit Comput. 2011;25:105–8.

    Article  PubMed  Google Scholar 

  21. Giraud R, Siegenthaler N, Park C, Beutler S, Bendjelid K. Transpulmonary thermodilution curves for detection of shunt. Intensive Care Med. 2010;36:1083–6.

    Article  PubMed  Google Scholar 

  22. Nusmeier A, de Boode WP, Hopman JC, Schoof PH, van der Hoeven JG, Lemson J. Cardiac output can be measured with the transpulmonary thermodilution method in a paediatric animal model with a left-to-right shunt. Br J Anaesth. 2011;107:336–43.

    Article  PubMed  CAS  Google Scholar 

  23. Hoeft A, Schorn B, Weyland A, Scholz M, Buhre W, Stepanek E, Allen SJ, Sonntag H. Bedside assessment of intravascular volume status in patients undergoing coronary bypass surgery. Anesthesiology. 1994;81:76–86.

    Article  PubMed  CAS  Google Scholar 

  24. Michard F, Alaya S, Zarka V, Bahloul M, Richard C, Teboul JL. Global end-diastolic volume as an indicator of cardiac preload in patients with septic shock. Chest. 2003;124:1900–8.

    Article  PubMed  Google Scholar 

  25. Marik PE, Baram M, Vahid B. Does central venous pressure predict fluid responsiveness? A systematic review of the literature and the tale of seven mares. Chest. 2008;134:172–8.

    Article  PubMed  Google Scholar 

  26. Neumann P. Extravascular lung water and intrathoracic blood volume: double versus single indicator dilution technique. Intensive Care Med. 1999;25:216–9.

    Article  PubMed  CAS  Google Scholar 

  27. Newman EV, Merrell M, Genecin A, Monge C, Milnor WR, McKeever WP. The dye dilution method for describing the central circulation. An analysis of factors shaping the time-concentration curves. Circulation. 1951;4:735–46.

    Article  PubMed  CAS  Google Scholar 

  28. Buhre W, Kazmaier S, Sonntag H, Weyland A. Changes in cardiac output and intrathoracic blood volume: a mathematical coupling of data? Acta Anaesthesiol Scand. 2001;45:863–7.

    Article  PubMed  CAS  Google Scholar 

  29. McLuckie A, Bihari D. Investigating the relationship between intrathoracic blood volume index and cardiac index. Intensive Care Med. 2000;26:1376–8.

    Article  PubMed  CAS  Google Scholar 

  30. Reuter DA, Kirchner A, Felbinger TW, Weis FC, Kilger E, Lamm P, Goetz AE. Usefulness of left ventricular stroke volume variation to assess fluid responsiveness in patients with reduced cardiac function. Crit Care Med. 2003;31:1399–404.

    Article  PubMed  Google Scholar 

  31. Lichtwarck-Aschoff M, Zeravik J, Pfeiffer UJ. Intrathoracic blood volume accurately reflects circulatory volume status in critically ill patients with mechanical ventilation. Intensive Care Med. 1992;18:142–7.

    Article  PubMed  CAS  Google Scholar 

  32. Huber W, Umgelter A, Reindl W, Franzen M, Schmidt C, von Delius S, Geisler F, Eckel F, Fritsch R, Siveke J, Henschel B, Schmid RM. Volume assessment in patients with necrotizing pancreatitis: a comparison of intrathoracic blood volume index, central venous pressure, and hematocrit, and their correlation to cardiac index and extravascular lung water index. Crit Care Med. 2008;36:2348–54.

    Article  PubMed  Google Scholar 

  33. Mutoh T, Kazumata K, Ishikawa T, Terasaka S. Performance of bedside transpulmonary thermodilution monitoring for goal-directed hemodynamic management after subarachnoid hemorrhage. Stroke. 2009;40:2368–74.

    Article  PubMed  Google Scholar 

  34. Sakka SG, Bredle DL, Reinhart K, Meier-Hellmann A. Comparison between intrathoracic blood volume and cardiac filling pressures in the early phase of hemodynamic instability of patients with sepsis or septic shock. J Crit Care. 1999;14:78–83.

    Article  PubMed  CAS  Google Scholar 

  35. Wolf S, Riess A, Landscheidt JF, Lumenta CB, Friederich P, Schürer L. Global end-diastolic volume acquired by transpulmonary thermodilution depends on age and gender in awake and spontaneously breathing patients. Crit Care. 2009;13:R202.

    Article  PubMed  Google Scholar 

  36. Trof RJ, Beishuizen A, Cornet AD, de Wit RJ, Girbes AR, Groeneveld AB. Volume-limited versus pressure-limited hemodynamic management in septic and nonseptic shock. Crit Care Med. 2012;40:1177–85.

    Article  PubMed  Google Scholar 

  37. Goepfert MS, Richter PH, von Sandersleben A, Gruetzmacher J, Rafflenbeul E, Roeher K, zu Eulenburg C, Reichenspurner H, Goetz AE, Reuter DA. Does early perioperative goal directed therapy using functional and volumetric hemodynamic parameters improve therapy in cardiac surgery? A prospective, randomized controlled trial. Intensive Care Med. 2011;37(Suppl 2):S132 (P 0506).

    Google Scholar 

  38. Brown LM, Liu KD, Matthay MA. Measurement of extravascular lung water using the single indicator method in patients: research and potential clinical value. Am J Physiol Lung Cell Mol Physiol. 2009;297:L547–58.

    Article  PubMed  CAS  Google Scholar 

  39. Giuntini C, Pistolesi M, Miniati M, Fazio F. Extravascular lung water. Eur J Nucl Med. 1987;13(Suppl):S63–9.

    PubMed  Google Scholar 

  40. Hofmann D, Klein M, Wegscheider K, Sakka SG. Extended hemodynamic monitoring using transpulmonary thermodilution Influence of various factors on the accuracy of the estimation of intrathoracic blood volume and extravascular lung water in critically ill patients. Anaesthesist. 2005;54:319–26.

    Article  PubMed  CAS  Google Scholar 

  41. Katzenelson R, Perel A, Berkenstadt H, Preisman S, Kogan S, Sternik L, Segal E. Accuracy of transpulmonary thermodilution versus gravimetric measurement of extravascular lung water. Crit Care Med. 2004;32:1550–4.

    Article  PubMed  Google Scholar 

  42. Tagami T, Kushimoto S, Yamamoto Y, Atsumi T, Tosa R, Matsuda K, Oyama R, Kawaguchi T, Masuno T, Hirama H, Yokota H. Validation of extravascular lung water measurement by single transpulmonary thermodilution: human autopsy study. Crit Care. 2010;14:R162.

    Article  PubMed  Google Scholar 

  43. Oppenheimer L, Elings VB, Lewis FR. Thermal-dye lung water measurements: effects of edema and embolization. J Surg Res. 1979;26:504–12.

    Article  PubMed  CAS  Google Scholar 

  44. Schreiber T, Hüter L, Schwarzkopf K, Schubert H, Preussler N, Bloos F, Gaser E, Karzai W. Lung perfusion affects preload assessment and lung water calculation with the transpulmonary double indicator method. Intensive Care Med. 2001;27:1814–8.

    Article  PubMed  CAS  Google Scholar 

  45. Phillips CR, Smith SM. Predicted body weight-indexed extravascular lung water is elevated in acute respiratory distress syndrome. Crit Care Med. 2009;37:377–8.

    Article  PubMed  Google Scholar 

  46. Roch A, Michelet P, D’journo B, Brousse D, Blayac D, Lambert D, Auffray JP. Accuracy and limits of transpulmonary dilution methods in estimating extravascular lung water after pneumonectomy. Chest. 2005;128:927–33.

    Article  PubMed  Google Scholar 

  47. Kuzkov VV, Suborov EV, Kirov MY, Kuklin VN, Sobhkhez M, Johnsen S, Waerhaug K, Bjertnaes LJ. Extravascular lung water after pneumonectomy and one-lung ventilation in sheep. Crit Care Med. 2007;35:1550–9.

    Article  PubMed  Google Scholar 

  48. Deeren DH, Dits H, Daelemans R, Malbrain MLNG. Effect of pleural fluid on the measurement of extrasvascular lung water by single transpulmonary thermodilution. Clin Intensive Care. 2004;15:119–22.

    Article  Google Scholar 

  49. Eisenberg PR, Hansbrough JR, Anderson D, Schuster DP. A prospective study of lung water measurement during patient management in an intensive care unit. Am Rev Respir Dis. 1987;136:662–8.

    Article  PubMed  CAS  Google Scholar 

  50. Mitchell JP, Schuller D, Calandrino FS, Schuster DP. Improved outcome based on fluid management in critically ill patients requiring pulmonary artery catheterization. Am Rev Respir Dis. 1992;145:990–8.

    Article  PubMed  CAS  Google Scholar 

  51. Craig TR, Duffy MJ, Shyamsundar M, McDowell C, McLaughlin B, Elborn JS, McAuley DF. Extravascular lung water indexed to predicted body weight is a novel predictor of intensive care unit mortality in patients with acute lung injury. Crit Care Med. 2010;38:114–20.

    Article  PubMed  Google Scholar 

  52. Sakka SG, Klein M, Reinhart K, Meier-Hellmann A. Prognostic value of extravascular lung water in critically ill patients. Chest. 2002;122:2080–6.

    Article  PubMed  Google Scholar 

  53. Phillips CR, Chesnutt MS, Smith SM. Extravascular lung water in sepsis-associated acute respiratory distress syndrome: indexing with predicted body weight improves correlation with severity of illness and survival. Crit Care Med. 2008;36:69–73.

    Article  PubMed  Google Scholar 

  54. Kuzkov VV, Kirov MY, Sovershaev MA, Kuklin VN, Suborov EV, Waerhaug K, Bjertnaes LJ. Extravascular lung water determined with single transpulmonary thermodilution correlates with the severity of sepsis-induced acute lung injury. Crit Care Med. 2006;34:1647–53.

    Article  PubMed  Google Scholar 

  55. Michard F, Zarka V, Alaya S. Better characterization of acute lung injury/ARDS using lung water. Chest. 2004;125:1166–7.

    Article  PubMed  Google Scholar 

  56. Schuster DP. Identifying patients with ARDS: time for a different approach. Intensive Care Med. 1997;23:1197–203.

    Article  PubMed  CAS  Google Scholar 

  57. Michard F, Fernandez-Mondejar E, Kirov MY, Malbrain M, Tagami T. A new and simple definition for acute lung injury. Crit Care Med. 2012;40:1004–6.

    Article  PubMed  Google Scholar 

  58. Camporota L, De Neef M, Beale R. Extravascular lung water in acute respiratory distress syndrome: potential clinical value, assumptions and limitations. Crit Care. 2012;16:114.

    Article  PubMed  Google Scholar 

  59. LeTourmeau JL, Pinney J, Phillips CR. Extravascular lung water predicts progression to acute lung injury in patients with increased risk. Crit Care Med. 2012;40:847–54.

    Article  Google Scholar 

  60. Schuller D, Mitchell JP, Calandrino FS, Schuster DP. Fluid balance during pulmonary edema. Is fluid gain a marker or a cause of poor outcome? Chest. 1991;100:1068–75.

    Article  PubMed  CAS  Google Scholar 

  61. Aman J, Groeneveld AB, van Nieuw Amerongen GP. Predictors of pulmonary edema formation during fluid loading in the critically ill with presumed hypovolemia. Crit Care Med. 2012;40:793–9.

    Article  PubMed  Google Scholar 

  62. Pino-Sánchez F, Lara-Rosales R, Guerrero-López F, Chamorro-Marín V, Navarrete-Navarro P, Carazo-de la Fuente E, Fernández-Mondéjar E. Influence of extravascular lung water determination in fluid and vasoactive therapy. J Trauma. 2009;67:1220–4.

    Article  PubMed  Google Scholar 

  63. Monnet X, Anguel N, Osman D, Hamzaoui O, Richard C, Teboul JL. Assessing pulmonary permeability by transpulmonary thermodilution allows differentiation of hydrostatic pulmonary edema from ALI/ARDS. Intensive Care Med. 2007;33:448–53.

    Article  PubMed  Google Scholar 

  64. Chew MS, Ihrman L, During J, Bergenzaun L, Ersson A, Undén J, Ryden J, Akerman E, Larsson M. Extravascular lung water index improves the diagnostic accuracy of lung injury in patients with shock. Crit Care. 2012;16:R1.

    Article  PubMed  Google Scholar 

  65. Combes A, Berneau JB, Luyt CE, Trouillet JL. Estimation of left ventricular systolic function by single transpulmonary thermodilution. Intensive Care Med. 2004;30:1377–83.

    PubMed  Google Scholar 

  66. Trepte CJ, Eichhorn V, Haas SA, Richter HP, Goepfert MS, Kubitz JC, Goetz AE, Reuter DA. Thermodilution-derived indices for assessment of left and right ventricular cardiac function in normal and impaired cardiac function. Crit Care Med. 2011;39:2106–12.

    Article  PubMed  Google Scholar 

  67. Goepfert MS, Reuter DA, Akyol D, Lamm P, Kilger E, Goetz AE. Goal-directed fluid management reduces vasopressor and catecholamine use in cardiac surgery patients. Intensive Care Med. 2007;33:96–103.

    Article  PubMed  Google Scholar 

  68. Smetkin AA, Kirov MY, Kuzkov VV, Lenkin AI, Eremeev AV, Slastilin VY, Borodin VV, Bjertnaes LJ. Single transpulmonary thermodilution and continuous monitoring of central venous oxygen saturation during off-pump coronary surgery. Acta Anaesthesiol Scand. 2009;53:505–14.

    Article  PubMed  CAS  Google Scholar 

  69. Csontos C, Foldi V, Fischer T, Bogar L. Arterial thermodilution in burn patients suggests a more rapid fluid administration during early resuscitation. Acta Anaesthesiol Scand. 2008;52:742–9.

    Article  PubMed  CAS  Google Scholar 

  70. Branski LK, Herndon DN, Byrd JF, Kinsky MP, Lee JO, Fagan SP, Jeschke MG. Transpulmonary thermodilution for hemodynamic measurements in severely burned children. Crit Care. 2011;15:R118.

    Article  PubMed  Google Scholar 

  71. Kirov MY. Pulmonary edema in hypovolemic patients: how can we predict it in clinical practice? Crit Care Med. 2012;40:994–5.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samir G. Sakka.

Additional information

Samir Sakka is a member of the Medical Advisory Board of Pulsion Medical Systems, Munich, Germany. Daniel A. Reuter is a member of the Medical Advisory Board of Pulsion Medical Systems, Munich, Germany. He also received lecturing honoraria from Edwards Lifesciences, Davies, USA in the field of hemodynamic monitoring. Azriel Perel is a member of the Medical Advisory Board of Pulsion Medical Systems, Munich, Germany and a consultant for BMEYE, Amsterdam, The Netherlands.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sakka, S.G., Reuter, D.A. & Perel, A. The transpulmonary thermodilution technique. J Clin Monit Comput 26, 347–353 (2012). https://doi.org/10.1007/s10877-012-9378-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10877-012-9378-5

Keywords

Navigation