Skip to main content
Log in

Respiratory and non-respiratory sinus arrhythmia: implications for heart rate variability

  • Published:
Journal of Clinical Monitoring and Computing Aims and scope Submit manuscript

Abstract

The quantity of blood arriving at the left side of the heart oscillates throughout the breathing cycle due to the mechanics of breathing. Neurally regulated fluctuations in the length of the heart period act to dampen oscillations of the left ventricular stroke volume entering the aorta. We have reported that stroke volume oscillations but not spectral frequency variability stroke volume measures can be used to estimate the breathing frequency. This study investigated with the same recordings whether heart period oscillations or spectral heart rate variability measures could function as estimators of breathing frequency. Continuous 270 s cardiovascular recordings were obtained from 22 healthy adult volunteers in the supine and upright postures. Breathing was recorded simultaneously. Breathing frequency and heart period oscillation frequency were calculated manually, while heart rate variability spectral maximums were obtained using heart rate variability software. These estimates were compared to the breathing frequency using the Bland–Altman agreement procedure. Estimates were required to be <±10% (95% levels of agreement). The 95% levels of agreement measures for the heart period oscillation frequency (supine: −27.7 to 52.0%, upright: −37.8 to 45.9%) and the heart rate variability spectral maximum estimates (supine: −48.7 to 26.5% and −56.4 to 62.7%, upright: −37.8 to 39.3%) exceeded 10%. Multiple heart period oscillations were observed to occur during breathing cycles. Both respiratory and non-respiratory sinus arrhythmia was observed amongst healthy adults. This observation at least partly explains why heart period parameters and heart rate variability parameters are not reliable estimators of breathing frequency. In determining the validity of spectral heart rate variability measurements we suggest that it is the position of the spectral peaks and not the breathing frequency that should be the basis of decision making.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. McMullen MK, Whitehouse JM, Shine G, Towell A. The finometer can function as a standalone instrument in blood pressure variability studies and does not require support equipment to determine breathing frequency. Blood Press Monit. 2010;15:220–4.

    Article  PubMed  Google Scholar 

  2. Daly MdB. Peripheral arterial chemoreceptors and respiratory-cardiovascular intergration. Oxford: Claredon Press; 1997.

    Google Scholar 

  3. Levick JR. An introduction to cardiovascular physiology. 5th ed. London: Arnold; 2010.

    Google Scholar 

  4. Camm AJ, Malik M, Bigger JT, Breithardt G, Cerutti S, Cohen RJ, Coumel P, Fallen EL, Kennedy HL, Kleiger RE, Lombardi F, Malliani A, Moss AJ, Rottman JN, Schmidt G, Schwartz PJ, Singer DH. Heart rate variability. Standards of measurement, physiological interpretation, and clinical use. Eur Heart J. 1996;17:354–81.

    Google Scholar 

  5. Berntson GG, Bigger JT, Eckberg DL, Grossman P, Kaufmann PG, Malik M, Nagaraja HN, Porges SW, Saul JP, Stone PH, VanderMolen MW. heart rate variability: origins, methods, and interpretive caveats. Psychophysiology. 1997;34:623–48.

    Article  PubMed  CAS  Google Scholar 

  6. Katona PG, Jih F. Respiratory sinus arrhythmia: noninvasive measure of parasympathetic cardiac control. J Appl Physiol. 1975;39:801–5.

    PubMed  CAS  Google Scholar 

  7. Hainsworth R. Physiological background of heart rate variability. In: Malik M, Camm AJ, editors. Dynamic electrocardiology. New York: Blackwell Futura; 2004. p. 3–12.

    Google Scholar 

  8. Malliani A. Principles of cardiovascular neural regulation in health and disease. Dordrecht: Kluwer; 2000.

    Book  Google Scholar 

  9. Lombardi F, Colombo A, Fiorentini C. Heart rate variability: a simple methodology with several unrecognised technical and methodological problems. In: Osterhues H-H, Hombach V, Moss AJ, editors. Advances in noninvasive electrocardiographic monitoring techniques. Dordrecht: Kluwer; 2000. p. 289–95.

    Chapter  Google Scholar 

  10. Bloomfield DM, Magnano A, Bigger JT Jr, Rivadeneira H, Parides M, Steinman RC. Comparison of spontaneous vs. metronome-guided breathing on assessment of vagal modulation using Rr variability. Am J Physiol Heart Circ Physiol. 2001;280:H1145–50.

    PubMed  CAS  Google Scholar 

  11. Kamen PW, Krum H, Tonkin AM. Poincaré plot of heart rate variability allows quantitative display of parasympathetic nervous activity in humans. Clin Sci. 1996;91:201–8.

    PubMed  CAS  Google Scholar 

  12. Masi CM, Hawkley LC, Rickett EM, Cacioppo JT. Respiratory sinus arrhythmia and diseases of aging: obesity, diabetes mellitus, and hypertension. Biol Psychol. 2007;74:212–23.

    Article  PubMed  Google Scholar 

  13. Bosch NM, Riese H, Ormel J, Verhulst F, Oldehinkel AJ. Stressful life events and depressive symptoms in young adolescents: modulation by respiratory sinus arrhythmia? the trails study. Biol Psychol. 2009;81:40–7.

    Article  PubMed  Google Scholar 

  14. Gentzler AL, Santucci AK, Kovacs M, Fox NA. Respiratory sinus arrhythmia reactivity predicts emotion regulation and depressive symptoms in at-risk and control children. Biol Psychol. 2009;82:156–63.

    Article  PubMed  Google Scholar 

  15. Hinds AL, Woody EZ, Drandic A, Schmidt LA, Van Ameringen M, Coroneos M, Szechtman H. The psychology of potential threat: properties of the security motivation system. Biol Psychol. 2010;85:331–7.

    Article  PubMed  Google Scholar 

  16. Mathewson KJ, Dywan J, Snyder PJ, Tays WJ, Segalowitz SJ. Autonomic regulation and maze-learning performance in older and younger adults. Biol Psychol. 2011;88:20–7.

    Article  PubMed  Google Scholar 

  17. Denver JW, Reed SF, Porges SW. Methodological issues in the quantification of respiratory sinus arrhythmia. Biol Psychol. 2007;74:286–94.

    Article  PubMed  Google Scholar 

  18. Allen JJB, Chambers AS, Towers DN. The many metrics of cardiac chronotropy: a pragmatic primer and a brief comparison of metrics. Biol Psychol. 2007;74:243–62.

    Article  PubMed  Google Scholar 

  19. Hamilton C, Stamey J. Using bland-altman to assess agreement between two medical devices–don’t forget the confidence intervals! J Clin Monit Comput. 2007;21:331–3.

    Article  PubMed  Google Scholar 

  20. Guelen I, Westerhof BE, van der Sar GL, van Montfrans GA, Kiemeneij F, Wesseling KH, Bos WJW. Finometer, finger pressure measurements with the possibility to reconstruct brachial pressure. Blood Press Mon. 2003;8:27–30.

    Article  Google Scholar 

  21. Guelen I, Westerhof BE, van der Sar GL, van Montfrans GA, Kiemeneij F, Wesseling KH, Bos WJW. Validation of brachial artery pressure reconstruction from finger arterial pressure. J Hypertens. 2008;26:1321–7.

    Article  PubMed  CAS  Google Scholar 

  22. Di Rienzo M, Castiglioni P, Ramirez AJ, Mancia G, Pedotti A. Sequential spectral analysis of blood pressure and heart rate in humans and animals. In: Di Rienzo M, Mancia G, Parati G, Pedotti A, Zanchetti A, editors. Blood pressure and heart rate variability. Amsterdam: IOS Press; 1993. p. 24–38.

    Google Scholar 

  23. Bland JM, Altman DG. Measuring agreement in method comparison studies. Stat Methods Med Res. 1999;8:135–60.

    Article  PubMed  CAS  Google Scholar 

  24. Spyer KM, Gourine AV. Chemosensory pathways in the brainstem controlling cardiorespiratory activity. Philos Trans R Soc Lond B Biol Sci. 2009;364:2603–10.

    Article  PubMed  Google Scholar 

  25. Borst C, Karemaker JM. Respiratory modulation of reflex evoked by breif carotid sinus nerve stimulation: additive rather than gating mechanism. In: Sleight P, editor. Arterial baroreptors and hypertension. Oxford: Oxford University Press; 1980. p. 276–81.

    Google Scholar 

  26. Piepoli M, Sleight P, Leuzzi S, Valle F, Spadacini G, Passino C, Johnston J, Bernardi L. Origin of respiratory sinus arrhythmia in conscious humans: an important role for arterial carotid baroreceptors. Circulation. 1997;95:1813–21.

    PubMed  CAS  Google Scholar 

  27. Parati G, Mancia G, Rienzo MD, Castiglioni P, Taylor JA, Studinger P. Point: counterpoint: cardiovascular variability is/is not an index of autonomic control of circulation. J Appl Physiol. 2006;101:676–82.

    Article  PubMed  Google Scholar 

  28. Eckberg DL. Point: counterpoint: cardiovascular variability is/is not an index of autonomic control of circulation. J Appl Physiol. 2006;101:688.

    PubMed  Google Scholar 

  29. Karemaker JM. Cardiovascular variability is/is not an index of autonomic control of circulation. J Appl Physiol. 2006;101:1003.

    Article  PubMed  Google Scholar 

  30. Malliani A, Julien C, Billman GE, Cerutti S, Piepoli MF, Bernardi L, Sleight P, Cohen MA, Tan CO, Laude D, Elstad M, Toska K, Evans JM, Eckberg DL. Cardiovascular variability is/is not an index of autonomic control of circulation. J Appl Physiol. 2006;101:684–8.

    Article  PubMed  Google Scholar 

  31. Eckberg DL. Point: counterpoint: respiratory sinus arrhythmia is due to a central mechanism vs. respiratory sinus arrhythmia is due to the baroreflex mechanism. J Appl Physiol. 2009;106:1740–2.

    Article  PubMed  Google Scholar 

  32. Karemaker JM. Counterpoint: respiratory sinus arrhythmia is due to the baroreflex mechanism. J Appl Physiol. 2009;106:1742–3.

    Article  PubMed  Google Scholar 

  33. Eckberg DL. Counterpoint: respiratory sinus arrhythmia is due to the baroreflex mechanism rebuttal from Eckberg. J Appl Physiol. 2009;106:1744.

    Article  Google Scholar 

  34. Karemaker JM. Counterpoint: respiratory sinus arrhythmia is due to the baroreflex mechanism rebuttal from Karemaker. J Appl Physiol. 2009;106:1744.

    Google Scholar 

  35. Karemaker JM. Last word on point: counterpoint: respiratory sinus arrhythmia is due to a central mechanism vs. respiratory sinus arrhythmia is due to the baroreflex mechanism. J Appl Physiol. 2009;106:1750.

    Article  PubMed  Google Scholar 

  36. McMullan S, Pilowsky PM. The effects of baroreceptor stimulation on central respiratory drive: a review. Respir Physiol Neurobiol. 2010;174:37–42.

    Article  PubMed  Google Scholar 

  37. Sin PYW, Galletly DC, Tzeng YC. Influence of breathing frequency on the pattern of respiratory sinus arrhythmia and blood pressure: old questions revisited. Am J Physiol Heart Circ Physiol. 2010;298:H1588–99.

    Article  PubMed  CAS  Google Scholar 

  38. Bland JM, Altman DG. Stastical-methods for assessing agreement between 2 methods of clinical measurement. Lancet. 1986;1:307–10.

    Article  PubMed  CAS  Google Scholar 

  39. Bland JM, Altman DG. Applying the right statistics: analyses of measurement studies. Ultrasound Obstet Gynecol. 2003;22:85–93.

    Article  PubMed  CAS  Google Scholar 

  40. Ganong WF. Review of medical physiology. 22nd ed. New York: Lange Medical Books/McGraw-Hill; 2005.

    Google Scholar 

  41. Matthews LR. Cardiopulmonary anatomy and physiology. New York: Lippincott; 1996.

    Google Scholar 

  42. Stern RM, Ray WJ, Quigley KS. Psychological recording. 2nd ed. Oxford: University Press; 2001.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael K. McMullen.

Additional information

Trial registration: ISRCTN11339389. http://www.controlled-trials.com/ISRCTN11339389/mcmullen

Rights and permissions

Reprints and permissions

About this article

Cite this article

McMullen, M.K., Whitehouse, J.M., Shine, G. et al. Respiratory and non-respiratory sinus arrhythmia: implications for heart rate variability. J Clin Monit Comput 26, 21–28 (2012). https://doi.org/10.1007/s10877-011-9327-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10877-011-9327-8

Keywords

Navigation