Skip to main content

Advertisement

Log in

A review of pediatric capnography

  • Published:
Journal of Clinical Monitoring and Computing Aims and scope Submit manuscript

Abstract

Objectives

Capnography has become a standard of perioperative monitoring in pediatric anesthesiology. It has also begun to find application in a variety of situations outside the perioperative setting. While the use of capnography has been increasing, the dissemination and acceptability of capnography in all areas of pediatrics has been variable. The purpose of this study was to describe all the applications and interpretations of capnography that have been reported in children.

Methods

In March 2010, we completed a search of peer reviewed literature from MEDLINE (from 1950), CINAHL (from 1982) and the Cochrane Library. Final search results were limited to publications in which the primary intent was to describe the application or interpretations of capnography in children.

Results

This search resulted in a list of 44 applications and interpretations of capnography. We classified the applications and interpretations of capnography in children into six categories—Anesthetic Delivery Apparatus, Airway, Breathing, Circulation, Homeostasis and Non-perioperative. We discuss the four randomized controlled trials describing the use of capnography in children. Based on the available evidence, we have also assigned grades of recommendations for these applications and interpretations.

Conclusions

Capnography has been proven to be a useful non-invasive perioperative monitor of the physiology and safety of the child. This list of the clinical applications and interpretations of capnography could find use in teaching and simulation in pediatrics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Kalenda Z. Capnography: a sensitive method of early detection of air embolism. Acta Anaesthesiol Belg. 1975;23:78–80.

    PubMed  Google Scholar 

  2. American Society of Anesthesiologists. Standards of the American Society of Anesthesiologists: standards for basic anesthetic monitoring 2005. Available online-http://www.asahq.org/publicationsAndServices/standards/02.pdf (2005).

  3. American Academy of Pediatrics; American Academy of Pediatric Dentistry, Coté CJ, Wilson S; Work Group on Sedation. Guidelines for monitoring and management of pediatric patients during and after sedation for diagnostic and therapeutic procedures: an update. Pediatrics 2006; 118: 2587–2602.

    Google Scholar 

  4. Eipe N, Tarshis J. A system of classification for the clinical applications of capnography. J Clin Monit Comput. 2007;21:341–344.

    Article  PubMed  Google Scholar 

  5. Centre for Evidence Based Medicine (CEBM). Levels of evidence. Available at http://www.cebm.net/index.

  6. Cote CJ, Liu LM, Szyfelbein SK, Firestone S, et al. Intraoperative events diagnosed by expired carbon dioxide monitoring in children. Can Anaesth Soc J. 1986;33:315–320.

    Article  CAS  PubMed  Google Scholar 

  7. Valentin N, Lomholt B, Thorup M. Arterial to end-tidal carbon dioxide tension difference in children under halothane anaesthesia. Can Anaesth Soc J. 1982; 29: 12–15.

    Google Scholar 

  8. Anderson JL, Junkins E, Pribble C, Guenther E. Capnography and depth of sedation during propofol sedation in children. Ann Emerg Med. 2007;49:9–13.

    Article  PubMed  Google Scholar 

  9. Coté CJ, Wax DF, Jennings MA, Gorski CL, et al. Endtidal carbon dioxide monitoring in children with congenital heart disease during sedation for cardiac catheterization by nonanesthesiologists. Paediatr Anaesth. 2007;17:661–666.

    Article  PubMed  Google Scholar 

  10. Valentin N, Lomholt B, Thorup M. Halothane anaesthesia with spontaneous respiration for tonsillectomy in children. Acta Anaesthesiol Scand. 1982;26:53–55.

    Article  CAS  PubMed  Google Scholar 

  11. Bhavani-Shankar K, Philip JH. Defining segments and phases of a time capnogram. Anesth Analg. 2000;91:973–977.

    Article  CAS  PubMed  Google Scholar 

  12. Berman LS, Pyles ST. Capnographic detection of anaesthesia circle valve malfunctions. Can J Anaesth. 1988;35:473–475.

    Article  CAS  PubMed  Google Scholar 

  13. Tripathi M, Pandey M. Atypical “tails-up” capnograph due to breach in the sampling tube of side-stream capnometer. J Clin Monit Comput. 2000;16:17–20.

    Article  CAS  PubMed  Google Scholar 

  14. Lightdale JR, Goldmann DA, Feldman HA, Newburg AR, et al. Microstream capnography improves patient monitoring during moderate sedation: a randomized, controlled trial. Pediatrics. 2006;117:1170–1178.

    Article  Google Scholar 

  15. Salthe J, Kristiansen SM, Sollid S, Oglaend B. Capnography rapidly confirmed correct endotracheal tube placement during resuscitation of extremely low birthweight babies (< 1000 g). Acta Anaesthesiol Scand. 2006;50:1033–1036.

    Article  CAS  PubMed  Google Scholar 

  16. Aasheim P, Fasting S, Mostad U, Aadahl P. The reliability of endtidal CO2 in spontaneously breathing children during anaesthesia with laryngeal mask airway, low flow, sevoflurane and caudal epidural. Paediatr Anaesth. 2002;12:438–441.

    Article  PubMed  Google Scholar 

  17. Spahr-Schopfer IA, Bissonnette B, Hartley EJ. Capnometry and the paediatric laryngeal mask airway. Can J Anaesth. 1993;40:1038–1043.

    Article  CAS  PubMed  Google Scholar 

  18. Neema PK, Jayant A, Sethuraman M, Rathod RC. Mainstream time-capnography: an aid to select an appropriate uncuffed endotracheal tube in small children. J Clin Monit Comput. 2008;22:445–447.

    Article  PubMed  Google Scholar 

  19. Walker RW, Allen DL, Rothera MR. A fibreoptic intubation technique for children with mucopolysaccharidoses using the laryngeal mask airway. Paediatr Anaesth. 1997;7:421–426.

    Article  CAS  PubMed  Google Scholar 

  20. Temperley AD, Walker PJ. Blind nasal intubation by monitoring capnography in a neonate with congenital microstomia. Anaesth Intensive Care. 1995;23:490–492.

    CAS  PubMed  Google Scholar 

  21. Chang AB, Moloney GE, Harms PJ, Masters IB. Endoscopic intratracheal carbon dioxide measurements during pediatric flexible bronchoscopy. Paediatr Anaesth. 2004;14:650–655.

    Article  PubMed  Google Scholar 

  22. Choudhry DK. Single-lung ventilation in pediatric anesthesia. Anesthesiol Clin North America. 2005;23:693–708.

    Article  PubMed  Google Scholar 

  23. Abramo TJ, Wiebe RA, Scott S, Goto CS, et al. Noninvasive capnometry monitoring for respiratory status during pediatric seizures. Crit Care Med. 1997;25:1242–1246.

    Article  CAS  PubMed  Google Scholar 

  24. Bhat YR, Abhishek N. Mainstream end-tidal carbon dioxide monitoring in ventilated neonates. Singapore Med J. 2008;49:199–203.

    CAS  PubMed  Google Scholar 

  25. Sullivan KJ, Kissoon N, Goodwin SR. End-tidal carbon dioxide monitoring in pediatric emergencies. Pediatr Emerg Care. 2005;21:327–332.

    Article  PubMed  Google Scholar 

  26. Kunkov S, Pinedo V, Silver EJ, Crain EF. Predicting the need for hospitalization in acute childhood asthma using end-tidal capnography. Pediatr Emerg Care. 2005;21:574–577.

    Article  PubMed  Google Scholar 

  27. Tsai FF, Wang KY, Chen LK, Fan SZ. Alteration of capnogram as the first sign of pneumothorax in an infant who underwent bronchoscopy with jet ventilation. Acta Anaesthesiol Taiwan. 2009;47:92–94.

    Article  PubMed  Google Scholar 

  28. Mausser G, Friedrich G, Schwarz G. Airway management and anesthesia in neonates, infants and children during endolaryngotracheal surgery. Paediatr Anaesth. 2007;17:942–947.

    Article  PubMed  Google Scholar 

  29. Martinón-Torres F, Rodríguez-Núñez A, Martinón-Sánchez JM. Heliox therapy in infants with acute bronchiolitis. Pediatrics. 2002;109:68–73.

    Article  PubMed  Google Scholar 

  30. Bhende MS. End-tidal carbon dioxide monitoring in pediatrics—clinical applications. J Postgrad Med. 2001;47:215–218.

    CAS  PubMed  Google Scholar 

  31. Pianosi P, Hochman J. End-tidal estimates of arterial PCO2 for cardiac output measurement by CO2 rebreathing: a study in patients with cystic fibrosis and healthy controls. Pediatr Pulmonol. 1996;22:154–160.

    Article  CAS  PubMed  Google Scholar 

  32. Bithal PK, Pandia MP, Dash HH, Chouhan RS, et al. Comparative incidence of venous air embolism and associated hypotension in adults and children operated for neurosurgery in the sitting position. Eur J Anaesthesiol. 2004;21:517–522.

    CAS  PubMed  Google Scholar 

  33. Matthews IL, Bjørnstad PG, Kaldestad RH, Heiberg L, et al. The impact of shunt size on lung function in infants with univentricular heart physiology. Pediatr Crit Care Med. 2009;10:60–65.

    Article  PubMed  Google Scholar 

  34. De Vries JW, Plötz FB, Van Vught AJ. Pulse oximeter-enhanced accuracy of capnometry in children with cyanotic heart disease. Intensive Care Med. 2002;28:1336–1339.

    Article  PubMed  Google Scholar 

  35. Wilson J, Russo P, Russo J, Tobias JD. Noninvasive monitoring of carbon dioxide in infants and children with congenital heart disease: end-tidal versus transcutaneous techniques. J Intensive Care Med. 2005;20:291–295.

    Article  PubMed  Google Scholar 

  36. Tugrul M, Camci E, Sungur Z, Pembeci K. The value of end-tidal carbon dioxide monitoring during systemic-to-pulmonary artery shunt insertion in cyanotic children. J Cardiothorac Vasc Anesth. 2004;18:152–155.

    Article  PubMed  Google Scholar 

  37. Burrows FA. Physiologic dead space, venous admixture, and the arterial to end-tidal carbon dioxide difference in infants and children undergoing cardiac surgery. Anesthesiology. 1989;70:219–225.

    Article  CAS  PubMed  Google Scholar 

  38. Rolf N, Coté CJ. Persistent cardiac arrhythmias in pediatric patients: effects of age, expired carbon dioxide values, depth of anesthesia, and airway management. Anesth Analg. 1991;73:720–724.

    Article  CAS  PubMed  Google Scholar 

  39. Smith TC, Green A, Hutton P. Recognition of cardiogenic artifact in pediatric capnograms. J Clin Monit. 1994;10:270–275.

    Article  CAS  PubMed  Google Scholar 

  40. Garcia E, Abramo TJ, Okada P, Guzman DD, et al. Capnometry for noninvasive continuous monitoring of metabolic status in pediatric diabetic ketoacidosis. Crit Care Med. 2003;31:2539–2543.

    Article  PubMed  Google Scholar 

  41. Nagler J, Wright RO, Krauss B. End-tidal carbon dioxide as a measure of acidosis among children with gastroenteritis. Pediatrics. 2006;118:260–267.

    Article  PubMed  Google Scholar 

  42. Halachmi S, El-Ghoneimi A, Bissonnette B, Zaarour C, et al. Hemodynamic and respiratory effect of pediatric urological laparoscopic surgery: a retrospective study. J Urol. 2003;170:1651–1654.

    Article  PubMed  Google Scholar 

  43. Moses JM, Alexander JL, Agus MS. The correlation and level of agreement between end-tidal and blood gas pCO2 in children with respiratory distress: a retrospective analysis. BMC Pediatr. 2009;9:20.

    Article  PubMed  Google Scholar 

  44. Agus MS, Alexander JL, Mantell PA. Continuous non-invasive end-tidal CO2 monitoring in pediatric in patients with diabetic ketoacidosis. Pediatr Diabetes. 2006;7:196–200.

    Article  PubMed  Google Scholar 

  45. Stockwell JA, Goldstein RF, Ungerleider RM, Kern FH, et al. Cerebral blood flow and carbon dioxide reactivity in neonates during venoarterial extracorporeal life support. Crit Care Med. 1996;24:155–162.

    Article  CAS  PubMed  Google Scholar 

  46. Witte MK. Metabolic measurements during mechanical ventilation in the pediatric intensive care unit. Respir Care Clin N Am. 1996;2:573–586.

    CAS  PubMed  Google Scholar 

  47. Bhende MS, LaCovey DC. End-tidal carbon dioxide monitoring in the prehospital setting. Prehosp Emerg Care. 2001;5:208–213.

    Article  CAS  PubMed  Google Scholar 

  48. Bhende MS, Allen WD Jr. Evaluation of a Capno-Flo resuscitator during transport of critically ill children. Pediatr Emerg Care. 2002;18:414–416.

    Article  PubMed  Google Scholar 

  49. Tingay DG, Stewart MJ, Morley CJ. Monitoring of end tidal carbon dioxide and transcutaneous carbon dioxide during neonatal transport. Arch Dis Child Fetal Neonatal Ed. 2005;90:523–526.

    Article  Google Scholar 

  50. Bhende MS, Karasic DG, Menegazzi JJ. Evaluation of an end-tidal CO2 detector during cardiopulmonary resuscitation in a canine model for pediatric cardiac arrest. Pediatr Emerg Care. 1995;11:365–368.

    Article  CAS  PubMed  Google Scholar 

  51. Bhende MS, Thompson AE. Evaluation of an end-tidal CO2 detector during pediatric cardiopulmonary resuscitation. Pediatrics. 1995;95:395–399.

    CAS  PubMed  Google Scholar 

  52. Carno MA, Modrak J, Short R, Ellis ER, Connolly HV. Sleep associated gas exchange abnormalities in children and adolescents with habitual snoring. Pediatr Pulmonol. 2009;44:364–372.

    Article  PubMed  Google Scholar 

  53. Kirk VG, Batuyong ED, Bohn SG. Transcutaneous carbon dioxide monitoring and capnography during pediatric polysomnography. Sleep. 2006;29:1601–1608.

    PubMed  Google Scholar 

  54. Wirrell EC, Camfield PR, Gordon KE, Camfield CS, et al. Will a critical level of hyperventilation-induced hypocapnia always induce an absence seizure? Epilepsia. 1996;37:459–462.

    Article  CAS  PubMed  Google Scholar 

  55. Paige PL. Noninvasive monitoring of the neonatal respiratory system. Crit Care Nurs. 1990;1:409–421.

    CAS  Google Scholar 

  56. Hammer J, Newth CJ. Infant lung function testing in the intensive care unit. Intensive Care Med. 1995;21:744–752.

    Article  CAS  PubMed  Google Scholar 

  57. Ream RS, Schreiner MS, Neff JD, McRae KM, et al. Volumetric capnography in children. Influence of growth on the alveolar plateau slope. Anesthesiology. 1995;82:64–73.

    Article  CAS  PubMed  Google Scholar 

  58. Ellett ML, Woodruff KA, Stewart DL. The use of carbon dioxide monitoring to determine orogastric tube placement in premature infants: a pilot study. Gastroenterol Nurs. 2007;30:414–417.

    Article  PubMed  Google Scholar 

  59. Tobias JD. Transcutaneous carbon dioxide monitoring in infants and children. Paediatr Anaesth. 2009;19:434–444.

    Article  PubMed  Google Scholar 

  60. Association of Anaesthetists of Great Britain and Ireland. Recommendations for standards of monitoring during anaesthesia and recovery. Available online-http://www.aagbi.org/publications/guidelines/docs/standardsofmonitoring07.pdf (1988).

  61. Good ML, Gravenstein N. Capnography. In: Ehrenwerth J, Eisenkraft JB, eds. Anesthesia equipment—principles and applications, Chap. 10, (1st edn), St. Louis: Mosby-Year Book, Inc. 1993; pp. 237–248.

  62. Coté CJ, Rolf N, Liu LM, Goudsouzian NG, et al. A single-blind study of combined pulse oximetry and capnography in children. Anesthesiology. 1991;74:980–987.

    Article  PubMed  Google Scholar 

  63. Overdyk FJ, Carter R, Maddox RR, Callura J, et al. Continuous oximetry/capnometry monitoring reveals frequent desaturation and bradypnea during patient-controlled analgesia. Anesth Analg. 2007;105:412–418.

    Article  CAS  PubMed  Google Scholar 

  64. Vivien B, Amour J, Nicolas-Robin A, Vesque M, et al. An evaluation of capnography monitoring during the apnoea test in brain-dead patients. Eur J Anaesthesiol. 2007;20:1–8.

    Google Scholar 

  65. Purday JP. Monitoring during paediatric cardiac anaesthesia. Can J Anaesth. 1994;41:818–844.

    Article  CAS  PubMed  Google Scholar 

  66. Gattas D, Ayer R, Suntharalingam G, Chapman M. Carbon dioxide monitoring and evidence-based practice—now you see it, now you don’t. Crit Care. 2004;8:219–221.

    Article  PubMed  Google Scholar 

  67. Langhan M. Continuous end-tidal carbon dioxide monitoring in pediatric intensive care units. J Crit Care. 2009;24:227–230.

    Article  PubMed  Google Scholar 

  68. Langhan ML, Chen L. Current utilization of continuous end-tidal carbon dioxide monitoring in pediatric emergency departments. Pediatr Emerg Care. 2008;24:211–213.

    Article  PubMed  Google Scholar 

  69. Mallick A, Venkatanath D, Elliot SC, Hollins T, et al. A prospective randomised controlled trial of capnography versus bronchoscopy for Blue Rhino percutaneous tracheostomy. Anaesthesia. 2003;58:864–868.

    Article  CAS  PubMed  Google Scholar 

  70. Helm M, Schuster R, Hauke J, Lampl L. Tight control of prehospital ventilation by capnography in major trauma victims. Br J Anaesth. 2003;90:327–332.

    Article  CAS  PubMed  Google Scholar 

  71. Cheifetz IM, Myers TR. Respiratory therapies in the critical care setting. Should every mechanically ventilated patient be monitored with capnography from intubation to extubation? Respir Care. 2007;52:423–442.

    PubMed  Google Scholar 

  72. Hamel DS, Cheifetz IM. Do all mechanically ventilated pediatric patients require continuous capnography? Respir Care Clin N Am. 2006;12:501–513.

    PubMed  Google Scholar 

  73. Moon RE, Camporesi EM. Respiratory montoring. In: Miller RD, ed. Miller’s anesthesia, Chap. 33. (5th edn), Philadelphia: Churchill Livingstone; 2000; pp. 1272–1278.

  74. Litman RS, Cohen DE, Sclabassi RJ. Pediatric Anesthesia equipment and monitoring. In: Motoyama EK, Davis PJ, editors. Smith’s anesthesia for infants and children. 7th ed, Chap. 9. Philadelphia: Mosby-Elsevier. 2006; pp. 272–319.

  75. Gravenstein JS, Jaffe MB, Paulus DA. Capnography: clinical aspects (1st edn). Cambridge, UK: Cambridge University Press; 2004.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naveen Eipe MBBS, MD.

Additional information

Eipe N, Doherty DR. A review of pediatric capnography.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eipe, N., Doherty, D.R. A review of pediatric capnography. J Clin Monit Comput 24, 261–268 (2010). https://doi.org/10.1007/s10877-010-9243-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10877-010-9243-3

Keywords

Navigation