Skip to main content
Log in

Smartphone Motivated Highly Selective and Sensitive Colorimetric Detection of Hg2+ through Limonin Derived Silver Nanoparticles

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

Mercury (Hg2+) as environmental pollutant is a widespread concern due to its cytotoxic effect in humans and animals and needs to be monitored through cost effective methods based on naked-eye detection. Herein, in this study, we extracted and isolated the limonin (LMN) via a facile procedure and then employed it as capping agent for the synthesis of silver nanoparticles (LMN-AgNPs) as a first report. LMN-AgNPs were characterized through Field Emission Scanning Electron Microscopy (FESEM), Atomic Force Microscopy (AFM), Dynamic Light Scattering (DLS), Zeta Potential Analyzer (ZPA) and Fourier Transform Infrared (FTIR) spectroscopy. As-formed LMN-AgNPs were recognized as extremely selective and highly sensitive colorimetric sensor for Hg2+ with potential analytical application. The developed sensor showed an outstanding linear correlation with the concentration of Hg2+ in the range of 0.002 − 55 µM via a color change from deep yellow to transparent showing hypsochromic-hypochromic shift with the limit of detection (LOD) and the limit of quantification (LOQ) as low as 0.21 nM and 0.7 nM respectively. The sensor was further allied with smartphone for immediate and on-site quantification of Hg2+. The LOD and LOQ of 0.42 µM and 1.4 µM was true for smartphone based sensing in the range of 7.5–55 µM Hg2+. The detection of Hg2+ was not disrupted by the presence of other metals in either of mentioned cases. The practical applicability of the proposed Hg2+ sensor was tested using spectrophotometric and smartphone based approaches in human serum and urine as well as in tap water samples with acceptable ranges of recovery. As-developed sensor can work as a potential candidate for monitoring of Hg2+ pollution in diverse fields of studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Scheme 1
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

No data was used for the work reported in the article.

References

  1. C.T. Driscoll, R.P. Mason, H.M. Chan, D.J. Jacob, N. Pirrone, Mercury as a global pollutant: sources, pathways, and effects, (2013), Environ. Sci. Technol 47, 4967–4983. https://doi.org/10.1021/es305071v

  2. W.F. Fitzgerald, C.H. Lamborg, Geochemistry of mercury in the Environment, Treat. Geochem. 9,1–47. https://doi.org/10.1016/B0-08-043751-6/09048-4

  3. T. Unoki, M. Akiyama, Y. Kumagai, F.M. Gonçalves, M. Farina, J.B. Da Rocha, M. Aschner, Molecular pathways associated with methylmercury-induced Nrf2 modulation, (2018) Front. Genet. 9, 373. https://doi.org/10.3389/fgene.2018.00373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. A. Cebulska-Wasilewska, A. Panek, Z. Żabiński, P. Moszczyński, W. Au, Occupational exposure to mercury vapour on genotoxicity and DNA repair, (2005), Mutat. Res. Genet. Toxicol. Environ. Mutagen, (586), 102–114. https://doi.org/10.1016/j.mrgentox.2005.06.009

  5. S. De Flora, C. Bennicelli, M. Bagnasco, Genotoxicity of mercury compounds (1994), A review, Mutat. Res. Genet. Toxicol. Environ. Mutagen, 317, 57–79. https://doi.org/10.1016/0165-1110(94)90012-4

  6. A. Nersesyan, M. Kundi, M. Waldherr, T. Setayesh, M. Mišík, G. Wultsch, M. Filipic, G.R.M. Barcelos, S. Knasmueller, Results of micronucleus assays with individuals who are occupationally and environmentally exposed to mercury, lead and cadmium, (2016), Mutat. Res. Rev. Mutat. Res., 770, 119–139. https://doi.org/10.1016/j.mrrev.2016.04.002

    Article  CAS  PubMed  Google Scholar 

  7. S. Dasharathy, S. Arjunan, A. Maliyur Basavaraju, V. Murugasen, S. Ramachandran, R. Keshav, R. Murugan, Mutagenic, carcinogenic, and teratogenic effect of heavy Metals, Evidence-Based Complem (2022), Altern. Med. Article ID 8011953, 11 pages. https://doi.org/10.1155/2022/8011953

  8. D. Baralkiewicz, H. Gramowska, R.J.C. Gołdyn, Distribution of total mercury and methyl mercury in water, sediment and fish from Swarze¸ dzkie lake, (2006) J. Chem. Ecol. 22, 59–64. https://doi.org/10.1080/02757540500393935

    Article  CAS  Google Scholar 

  9. L. Trasande, P.J. Landrigan, C. Schechter, Public health and economic consequences of methyl mercury toxicity to the developing brain, (2005), Environ. Health Perspect. 113, 590–596. https://doi.org/10.1289/ehp.7743

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. C.T. Costley, K.F. Mossop, J.R. Dean, L.M. Garden, J. Marshall, J. Carroll, Determination of mercury in environmental and biological samples using pyrolysis atomic absorption spectrometry with gold amalgamation, (2000), Anal. Chim. Acta 405, 179–183. https://doi.org/10.1016/S0003-2670(99)00742-4

    Article  CAS  Google Scholar 

  11. H. Bagheri, A. Gholami, Determination of very low levels of dissolved mercury (II) and methylmercury in river waters by continuous flow with on-line UV decomposition and cold-vapor atomic fluorescence spectrometry after pre-concentration on a silica gel-2-mercaptobenzimidazol sorbent, (2001), Talanta 55, 1141–1150. https://doi.org/10.1016/S0039-9140(01)00546-X.

  12. E. Bernalte, C.M. Sánchez, E.P. Gil, Determination of mercury in ambient water samples by anodic stripping voltammetry on screen-printed gold electrodes, (2011), Anal. Chim. Acta, 689, 60–64. https://doi.org/10.1016/j.aca.2011.01.042

    Article  CAS  PubMed  Google Scholar 

  13. B.M.W. Fong, T.S. Siu, J.S.K. Lee, S.Tam, Determination of mercury in whole blood and urine by inductively coupled plasma mass spectrometry, (2007), J. Anal. Toxicol. 31, 281–287. https://doi.org/10.1093/jat/31.5.281.

    Article  CAS  PubMed  Google Scholar 

  14. D. Martín-Yerga, M.B. González-García, A. Costa-García, Electrochemical determination of mercury: A review, (2013), Talanta 116, 1091–1104, https://doi.org/10.1016/j.talanta.2013.07.056

    Article  CAS  PubMed  Google Scholar 

  15. S.C. Hight, J. Cheng, Determination of methylmercury and estimation of total mercury in seafood using high performance liquid chromatography (HPLC) and inductively coupled plasma-mass spectrometry (ICP-MS): Method development and validation, (2006), Anal. Chim. Acta, 567, 160–172. https://doi.org/10.1016/j.aca.2006.03.048

    Article  CAS  Google Scholar 

  16. A. Apilux, W. Siangproh, N. Praphairaksit, O. Chailapakul, Simple and rapid colorimetric detection of Hg (II) by a paper-based device using silver nanoplates, (2012), Talanta 97, 388–394. https://doi.org/10.1016/j.talanta.2012.04.050

  17. Y. Ziai, C. Rinoldi, P. Nakielski, L.D. Sio, F. Pierini, Smart plasmonic hydrogels based on gold and silver nanoparticles for biosensing application, (2022), Curr. Opin. Biomed. Eng. 24, 100413. https://doi.org/10.1016/j.cobme.2022.100413

    Article  CAS  Google Scholar 

  18. Y. Chen, L. Chen, Y. Wu, J. Di, Highly sensitive determination of dopamine based on the aggregation of small-sized gold nanoparticles, (2019), Microchem. J. 147, 955–961. https://doi.org/10.1016/j.microc.2019.04.025

    Article  CAS  Google Scholar 

  19. G. Pasparakis, Recent developments in the use of gold and silver nanoparticles in biomedicine, (2022) Nanomed. Nanobiotech. 14(5) e1817. https://doi.org/10.1002/wnan.1817

    Article  CAS  Google Scholar 

  20. R. Chadha, A. Das, J. Lobo, V.O. Meenu, A. Paul, A. Ballal, N. Maiti, γ-Cyclodextrin capped silver and gold nanoparticles as colorimetric and Raman sensor for detecting traces of pesticide “Chlorpyrifos” in fruits and vegetables, (2022), Coll. Surf. A: Physicochem. Eng. Asp. 641, 128558. https://doi.org/10.1016/j.colsurfa.2022.128558

  21. A. De, A. Kumari, P. Jain, A.K. Manna, G. Bhattacharjee, Plasmonic sensing of Hg(II), Cr(III), and Pb(II) ions from aqueous solution by biogenic silver and gold nanoparticles, (2021), Inorg. Nano-Metal Chem. 51(9), 1214–1225. https://doi.org/10.1080/24701556.2020.1826523

    Article  CAS  Google Scholar 

  22. N. Xu, S. Jin, L. Wang, Metal nanoparticles-based nanoplatforms for colorimetric sensing: A review, (2021), Rev. Anal. Chem. 40, 1–11. https://doi.org/10.1515/revac-2021-0122

    Article  CAS  Google Scholar 

  23. B. Tim, P. Błaszkiewicz, M. Kotkowiak, Recent advances in metallic nanoparticle assemblies for surface-enhanced spectroscopy, (2022), Int. J. Mol. Sci. 23(1), 1–24. https://doi.org/10.3390/ijms23010291

  24. Z. He, F. Li, P. Zuo, H. Tian, Principles and applications of resonance energy transfer involving noble metallic nanoparticles, (2023), Materials 16, 3083. https://doi.org/10.3390/ma16083083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Y.X. Zhang, Y.H. Wang, Nonlinear optical properties of metal nanoparticles: a review, (2017) RSC Adv. 7, 45129–45144. https://doi.org/10.1039/C7RA07551K

    Article  CAS  Google Scholar 

  26. N. ul Ain, I. Anis, F. Ahmed, M.R. Shah, S. Parveen, S. Faizi, S. Ahmed, Colorimetric detection of amoxicillin based on querecetagetin coated silver nanoparticles, (2018), Sens. Actu. B Chem. 265, 617–624. https://doi.org/10.1016/j.snb.2018.03.079

    Article  CAS  Google Scholar 

  27. K.B. Narayanan, S.S. Han, Highly selective and quantitative colorimetric detection of mercury (II) ions by carrageenan-functionalized Ag/AgCl nanoparticles, (2017), Carbohydr. Polym 160, 90–96. https://doi.org/10.1016/j.carbpol.2016.12.055

  28. S.H. Lee, B.-H. Jun, Silver nanoparticles: synthesis and application for nanomedicine, (2019), Int. J. Mol. Sci. 20, 865. https://doi.org/10.3390/ijms20040865

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. S. Pedroso-Santana, N. Fleitas-Salazar, The use of capping agents in the stabilization and functionalization of metallic nanoparticles for biomedical applications, (2023), Part. Part. Syst. Charact. 40, 2200146. https://doi.org/10.1002/ppsc.202200146

    Article  CAS  Google Scholar 

  30. M.L. Firdaus, I. Fitriani, S. Wyantuti, Y.W. Hartati, R. Khaydarov, J.A. Mcalister, H. Obata, T. Gamo, Colorimetric detection of mercury (II) ion in aqueous solution using silver nanoparticles, (2017), Anal. Sci. 33, 831–837. https://doi.org/10.2116/analsci.33.831

  31. N. Zohora, D. Kumar, M. Yazdani, V.M. Rotello, R. Ramanathan, V. Bansal, Rapid colorimetric detection of mercury using biosynthesized gold nanoparticles, (2017), Colloids Surf. A Physicochem. Eng. Asp. 532, 451–457. https://doi.org/10.1016/j.colsurfa.2017.04.036

    Article  CAS  Google Scholar 

  32. A. Jabbar, A. Abbas, N. Assad, M. Naeem-ul-Hassan, H.A. Alhazmi, A. Najmi, K. Zoghebi, M.A. Bratty, A. Hanbashif, H.M.A. Amin, A highly selective Hg2+ colorimetric sensor and antimicrobial agent based on green synthesized silver nanoparticles using Equisetum diffusum extract, 2023, RSC Adv 13, 28666.

  33. A. Jeevika, D.R. Shankaran, Functionalized silver nanoparticles probe for visual colorimetric sensing of mercury, (2016), Mater. Res. Bull. 83, 48–55. https://doi.org/10.1016/j.materresbull.2016.05.029

    Article  CAS  Google Scholar 

  34. P. Phucharoenrak, C. Muangnoi, D. Trachootham, A green extraction method to achieve the highest yield of limonin and hesperidin from lime peel powder (Citrus aurantifolia), (2022), Molecules. 27, 820. https://doi.org/10.3390/molecules27030820

  35. K. Farhadi, M. Forough, R. Molaei, S. Hajizadeh, A. Rafipour, Highly selective Hg2 + colorimetric sensor using green synthesized and unmodified silver nanoparticles, (2012), Sens. Actuators B Chem. 161, 880–885. https://doi.org/10.1016/j.snb.2011.11.052

    Article  CAS  Google Scholar 

  36. Y.F. Yang, L.Z. Zhang, X.P. Du, S.F. Zhang, L.J. Li, Z.D. Jiang, L.M. Wu, H. Ni, F. Chen, Recovery and purification of limonin from pummelo [Citrus grandis] peel using water extraction, ammonium sulfate precipitation and resin adsorption, (2017), J. Chromatogr. B. 1060, 150–157. https://doi.org/10.1016/j.jchromb.2017.05.036

  37. S. Qin, C. Lv, Q. Wang, Z. Zheng, X. Sun, M. Tang, F. Deng, Extraction, identification, and antioxidant property evaluation of limonin from pummelo seeds, (2018), Anim. Nutr. 4, 281–287. https://doi.org/10.1016/j.aninu.2018.05.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Q. Abbas, Understanding the UV-Vis spectroscopy for nanoparticles, (2019), J. Nanomater. Mol. Nanotechnol. 8, 1–3. https://doi.org/10.4172/2324-8777.1000268

    Article  CAS  Google Scholar 

  39. N. Agasti, V.K. Singh, N.K. Kaushik, Synthesis ofwater soluble glycine capped silver nanoparticles and their surface selective interaction, (2015), Mater. Res. Bull. 64, 17–21

    Article  CAS  Google Scholar 

  40. C.H. Bae, S.H. Nam, S.M. Park, Formation of silver nanoparticles by laser ablation of a silver target in NaCl solution, (2002), Appl. Surf. Sci. 197, 628–634. https://doi.org/10.1016/S0169-4332(02)00430-0

    Article  Google Scholar 

  41. J. Scalf, P. West, Introduction to nanoparticle characterization with AFM, (2006), Pacific Nanotechnology. Santa Clara 1–8. https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=10d8ef56529f45eca73ba6692e5ebec76ebee1ce

  42. Y. Meng, A sustainable approach to fabricating Ag nanoparticles/PVA hybrid nanofiber and its catalytic activity, (2015), Nanomaterials 5, 1124–1135. https://doi.org/10.3390/nano5021124

  43. S. Bhagat, H. Shaikh, A. Nafady, Sirajuddin, S.T.H. Sherazi, M.I. Bhanger, M.R. Shah, M.I. Abro, R. Memon, R. Bhagat, Trace level colorimetric Hg2+ sensor driven by Citrus japonica leaf extract derived silver nanoparticles: Green synthesis and application, (2022), J. Clust. Sci. 33, 1865–1875. https://doi.org/10.1007/s10876-021-02109-1

    Article  CAS  Google Scholar 

  44. Mercury in Drinking-water Background document for development of WHO Guidelines for Drinking-water Quality © World Health Organization 2005. https://www.who.int/docs/default-source/wash-documents/wash-chemicals/mercury-background-document.pdf?sfvrsn=9b117325_4

  45. K.L. Nuttall, Interpreting Mercury in Blood and Urine of Individual Patients, (2004), Ann. Clin. Lab. Sci. 34 (3) 235–250. http://www.annclinlabsci.org/content/34/3/235.full

    CAS  PubMed  Google Scholar 

  46. B. Janani, A. Syed, A.M. Thomas, A.H. Bahkali, A.M. Elgorban, L.L. Raju, S.S. Khan, UV–vis spectroscopic method for the sensitive and selective detection of mercury by silver nanoparticles in presence of alanine, (2020), Optik. 204, 164160. https://doi.org/10.1016/j.ijleo.2019.164160

    Article  CAS  Google Scholar 

  47. B. Janani, A. Syed, L.L. Raju, N. Marraiki, A.M. Elgorban, N.S. Zaghloul, A.M. Thomas, A. Das, S.S. Khan, Highly selective and effective environmental mercuric ion detection method based on starch modified Ag NPs in presence of glycine, (2020), Opt. Commun. 465, 125564. https://doi.org/10.1016/j.optcom.2020.125564

    Article  CAS  Google Scholar 

  48. S. Balasurya, P. Ahmad, A.M. Thomas, L.L. Raju, A. Das, S.S. Khan, Rapid colorimetric and spectroscopy based sensing of mercury by surface functionalized silver nanoparticles in the presence of tyrosine, (2020), Opt. Commun. 464, 125512. https://doi.org/10.1016/j.optcom.2020.125512

  49. Y. Guo, Z. Wang, W. Qu, H. Shao, X. Jiang, Bioelectronics, Colorimetric detection of mercury, lead and copper ions simultaneously using protein-functionalized gold nanoparticles, (2011), Biosensors and Bioelectronics. 26, 4064–4069. https://doi.org/10.1016/j.bios.2011.03.033

    Article  CAS  PubMed  Google Scholar 

  50. M. Palanna, S. Aralekallu, C.K. Prabhu, V.A. Sajjan, L.K. Sannegowda, Nanomolar detection of mercury (II) using electropolymerized phthalocyanine film, (2021), Electrochim. Acta. 367, 137519. https://doi.org/10.1016/j.electacta.2020.137519

    Article  CAS  Google Scholar 

  51. G. Vyas, S. Bhatt, P. Paul, Synthesis of calixarene-capped silver nanoparticles for colorimetric and amperometric detection of mercury (HgII, Hg0), (2019), ACS Omega. 4, 3860–3870. https://doi.org/10.1021/acsomega.8b03299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. L. Huang, Q. Zhu, J. Zhu, L. Luo, S. Pu, W. Zhang, W. Zhu, J. Sun, J. Wang, Portable colorimetric detection of mercury (II) based on a non-noble metal nanozyme with tunable activity (2019), Inorg. Chem. 58, 1638–1646. https://doi.org/10.1021/acs.inorgchem.8b03193

  53. K.S. Dharshini, T. Yokesh, M. Mariappan, F. Ameen, M.A. Islam, A.J.C. Veerappan, Photosynthesis of silver nanoparticles embedded paper for sensing mercury presence in environmental water, (2023), Chemosphere 329, 138610. https://doi.org/10.1016/j.chemosphere.2023.138610

  54. M.L. Budlayan, J. Dalagan, J.P. Lagare-Oracion, J. Patricio, S. Arco, F. Latayada, T. Vales, B. Baje, A. Alguno, R.J.E.N. Capangpangan, Detecting mercury ions in water using a low-cost colorimetric sensor derived from immobilized silver nanoparticles on a paper substrate, (2022), Environ. Nanotech. Monitor. Manage 18, 100736. https://doi.org/10.1016/j.enmm.2022.100736

  55. K.B.A. Ahmed, R. Senthilnathan, S. Megarajan, V.J. Anbazhagan, Sunlight mediated synthesis of silver nanoparticles using redox phytoprotein and their application in catalysis and colorimetric mercury sensing, (2015), J. Photochem. Photobiol. B: Biol. 151, 39–45. https://doi.org/10.1016/j.jphotobiol.2015.07.003

    Article  CAS  Google Scholar 

  56. M. Sengan, D. Veeramuthu, A.J. Veerappan, Photosynthesis of silver nanoparticles using Durio zibethinus aqueous extract and its application in catalytic reduction of nitroaromatics, degradation of hazardous dyes and selective colorimetric sensing of mercury ions, (2018), Mater. Res. Bull. 100, 386–393. https://doi.org/10.1016/j.materresbull.2017.12.038

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors cordially acknowledge the kind efforts by the Director, HEJ Institute of Chemistry, ICCBS, University of Karachi, Pakistan regarding the provision of all possible facilities and supports during this investigation. The authors are further grateful and highly thankful to Research Support Project Number, RSP# 2024R79, of King Saud University, Riyadh, Saudi Arabia for provision of funding to financially support this work.

Author information

Authors and Affiliations

Authors

Contributions

AJ performed Synthesis, Investigation, Methodology, AB did Initial draft, Data curation. AN did Conceptualization, Funding. KH did Formal analysis, Resources. MK performed Formal analysis, Software. RAS did perform Visualization, Review. MH helped in Software, Characterization. SS did Validation. SU did Final Review, Correspondence. MRS did Supervision, Conceptualization, Correspondence.

Corresponding authors

Correspondence to Razium Ali Soomro, Sirajuddin or Muhammad Raza Shah.

Ethics declarations

Ethical Approval

This declaration is not applicable in case of this study.

Competing Interests

All the authors declare no known competing financial or personal interests that influence the reported work.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jabbar, A., Balouch, A., Nafady, A. et al. Smartphone Motivated Highly Selective and Sensitive Colorimetric Detection of Hg2+ through Limonin Derived Silver Nanoparticles. J Clust Sci (2024). https://doi.org/10.1007/s10876-024-02637-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10876-024-02637-6

Keywords

Navigation