Skip to main content

Advertisement

Log in

Lecithin Derived Nano-Propyl Gallate as Non-Toxic Anti-Inflammatory Agent: Synthesis, In-Vitro and In-Vivo Investigations

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

The current study describes the preparation of nano-formulation of propyl gallate (NPG vesicles) comprised of soya bean extracted soya-lecithin. The compound was evaluated for its in-vitro and in-vivo anti-oxidative and anti-inflammatory properties in addition with acute toxicity analysis in Wistar rats. Nano-carrier preparation acquired the film hydration method, while the evaluation for size distribution was carried out through dynamic light scattering (DLS) analysis. FTIR spectroscopy was used to identify the interaction between active material with excipient. Whereas, morphological evaluation was carried out by using atomic force microscopy (AFM). UV-visible spectrophotometer was used to measure the efficacy for drug encapsulation. The synthesized nano-carriers of propyl gallate has particle size of 201 ± 2.5 nm, with spherical morphology. The PDI index of nano-formulation is; 0.192 ± 0.8 indicates uniform size distribution with zeta potential − 43.4 ± 1.7mV values representing their highly stable nature. The drug encapsulation efficiency of the NPG vesicles was found to be 52%. The nano-formulation reveals the in-vitro anti-oxidative and anti-inflammatory properties and showed non-toxicity on normal human fibroblast cell line as compared to the parent compound propyl gallate. NPG vesicles showed prominent anti-inflammatory potential against carrageenan induced paw edema and found to be non-toxic in Wistar rats in acute toxicity studies for seven days. In conclusion, nano formulation NPG vesicles showed effective anti-oxidative and anti-inflammatory effects both in-vitro and in-vivo and has the efficacy to become a potential modulator for targeted therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this published article.

References

  1. M. Sharifi-Rad, N. V. Anil Kumar, P. Zucca, E. M. Varoni, L. Dini, E. Panzarini, J. Rajkovic, P. V. Tsouh Fokou, E. Azzini, I. Peluso, A. Prakash Mishra, M. Nigam, Y. El Rayess, M. E. Beyrouthy, L. Polito, M. Iriti, N. Martins, M. Martorell, A. O. Docea, W. N. Setzer, D. Calina, W. C. Cho, and J. Sharifi-Rad, Lifestyle, Oxidative Stress, and Antioxidants: Back and Forth in the Pathophysiology of Chronic Diseases Front Physiol, 2020. 11: p. 694.DOI: https://doi.org/10.3389/fphys.2020.00694.

  2. H. J. Forman and H. Zhang, Targeting oxidative stress in disease: promise and limitations of antioxidant therapy Nat Rev Drug Discov, 2021. 20(9): p. 689–709.DOI: https://doi.org/10.1038/s41573-021-00233-1.

  3. T. Hussain, B. Tan, Y. Yin, F. Blachier, M. C. Tossou, and N. Rahu, Oxidative Stress and Inflammation: What Polyphenols Can Do for Us? Oxid Med Cell Longev, 2016. 2016: p. 7432797.DOI: https://doi.org/10.1155/2016/7432797.

  4. D. Tsoukalas, P. Fragkiadaki, A. O. Docea, A. K. Alegakis, E. Sarandi, E. Vakonaki, E. Salataj, E. Kouvidi, D. Nikitovic, L. Kovatsi, D. A. Spandidos, A. Tsatsakis, and D. Calina, Association of nutraceutical supplements with longer telomere length Int J Mol Med, 2019. 44(1): p. 218–226.DOI: https://doi.org/10.3892/ijmm.2019.4191.

  5. C. Forni, F. Facchiano, M. Bartoli, S. Pieretti, A. Facchiano, D. D’Arcangelo, S. Norelli, G. Valle, R. Nisini, S. Beninati, C. Tabolacci, and R. N. Jadeja, Beneficial Role of Phytochemicals on Oxidative Stress and Age-Related Diseases Biomed Res Int, 2019. 2019: p. 8748253.DOI: https://doi.org/10.1155/2019/8748253.

  6. J. Lugrin, N. Rosenblatt-Velin, R. Parapanov, and L. Liaudet, The role of oxidative stress during inflammatory processes. Biological Chemistry, 2014. 395(2): p. 203–230.DOI: https://doi.org/10.1515/hsz-2013-0241.

    Article  CAS  PubMed  Google Scholar 

  7. U. Andersson and K. J. Tracey, HMGB1 is a therapeutic target for sterile inflammation and infection Annual review of immunology, 2011. 29: p. 139–162.DOI: https://doi.org/10.1146/annurev-immunol-030409-101323.

  8. N. Loukili, N. Rosenblatt-Velin, J. Li, S. Clerc, P. Pacher, F. Feihl, B. Waeber, and L. Liaudet, Peroxynitrite induces HMGB1 release by cardiac cells in vitro and HMGB1 upregulation in the infarcted myocardium in vivo Cardiovascular research, 2011. 89(3): p. 586–594.DOI: https://doi.org/10.1093/cvr/cvq373.

  9. J. Schulze, D. Zierath, P. Tanzi, K. Cain, D. Shibata, A. Dressel, and K. Becker, Severe stroke induces long-lasting alterations of high-mobility group box 1 Stroke, 2013. 44(1): p. 246–248.DOI: https://doi.org/10.1161/STROKEAHA.112.676072.

  10. J. A. Nogueira-Machado, C. M. d. O. Volpe, C. A. Veloso, and M. M. Chaves, HMGB1, TLR and RAGE: a functional tripod that leads to diabetic inflammation Expert opinion on therapeutic targets, 2011. 15(8): p. 1023–1035.DOI: https://doi.org/10.1517/14728222.2011.575360.

  11. Y. Gao, B. Gong, Z. Chen, J. Song, N. Xu, and Z. Weng, Damage-Associated Molecular Patterns, a Class of Potential Psoriasis Drug Targets International Journal of Molecular Sciences, 2024. 25(2): p. 771.DOI: https://doi.org/10.3390/ijms25020771.

  12. J. Tang, E. Tam, E. Song, A. Xu, and G. Sweeney, Crosstalk between myocardial autophagy and sterile inflammation in the development of heart failure Autophagy Reports, 2024. 3(1): p. 2320605. DOI: https://doi.org/10.1080/27694127.2024.2320605.

  13. L. J. S. d. Fonseca, V. Nunes-Souza, M. O. F. Goulart, and L. A. Rabelo, Oxidative Stress in Rheumatoid Arthritis: What the Future Might Hold regarding Novel Biomarkers and Add-On Therapies Oxidative Medicine and Cellular Longevity, 2019. 2019: p. 7536805. DOI: https://doi.org/10.1155/2019/7536805.

  14. E. P. o. F. Additives and N. S. A. t. Food, Scientific Opinion on the re-evaluation of propyl gallate (E 310) as a food additive. EFSA Journal, 2014. 12(4): p. 3642.DOI: https://doi.org/10.2903/j.efsa.2014.3642.

    Article  CAS  Google Scholar 

  15. C. Yang, W. Lim, F. W. Bazer, and G. Song, Propyl gallate induces cell death and inhibits invasion of human trophoblasts by blocking the AKT and mitogen-activated protein kinase pathways Food Chem Toxicol, 2017. 109(Pt 1): p. 497–504. DOI: https://doi.org/10.1016/j.fct.2017.09.049.

  16. E. Panel o. Additives, P. o. S. u. i. A. Feed, V. Bampidis, G. Azimonti, M. de Lourdes Bastos, H. Christensen, B. Dusemund, M. Kos Durjava, M. Kouba, M. López-Alonso, S. López Puente, F. Marcon, B. Mayo, A. Pechová, M. Petkova, F. Ramos, Y. Sanz, R. E. Villa, R. Woutersen, G. Aquilina, G. Bories, J. Gropp, C. Nebbia, and M. L. Innocenti, Safety and efficacy of propyl gallate for all animal species EFSA Journal, 2020. 18(4): p. e06069. DOI: https://doi.org/10.2903/j.efsa.2020.6069.

  17. K. Rehman, I. Ali, B. M. El-Haj, T. Kanwal, R. Maharjan, S. Saifullah, M. Imran, S. U. Simjee, and M. R. Shah, Synthesis of novel biocompatible resorcinarene based nanosized dendrimer-vesicles for enhanced anti-bacterial potential of quercetin. Journal of Molecular Liquids, 2021. 341: p. 116921.DOI: https://doi.org/10.1016/j.molliq.2021.116921.

    Article  CAS  Google Scholar 

  18. B. Descamps-Latscha, A. Nguyen, R. Golub, and M.-N. Feuillet-Fieux. Chemiluminescence in microamounts of whole blood for investigation of the human phagocyte oxidative metabolism function. in Annales de l’Institut Pasteur/Immunologie. 1982. Elsevier.

  19. P. Held, An introduction to reactive oxygen species. Tech Resources-App Guides, 2012. 802: p. 5–9.DOI: https://doi.org/10.1016/j.bbcan.2009.08.003.

    Article  CAS  Google Scholar 

  20. T. Mosmann, Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays Journal of immunological methods, 1983. 65(1–2): p. 55–63. DOI: https://doi.org/10.1016/0022-1759(83)90303-4.

  21. A. Samad, Y. Sultana, and M. Aqil, Liposomal drug delivery systems: an update review Curr Drug Deliv, 2007. 4(4): p. 297–305. DOI: https://doi.org/10.2174/156720107782151269.

  22. C. Wang, X. Lan, L. Zhu, Y. Wang, X. Gao, J. Li, H. Tian, Z. Liang, and W. Xu, Construction Strategy of Functionalized Liposomes and Multidimensional Application Small, 2024: p. 2309031.DOI: https://doi.org/10.1002/smll.202309031.

  23. K. Karthikeyan, B. R. Sarala Bai, K. Gauthaman, and S. Niranjali Devaraj, Protective effect of propyl gallate against myocardial oxidative stress-induced injury in rat J Pharm Pharmacol, 2005. 57(1): p. 67–73. https://doi.org/10.1211/0022357055065.

  24. W. H. Park, Propyl gallate decreases the proliferation of Calu-6 and A549 lung cancer cells via affecting reactive oxygen species and glutathione levels Journal of Applied Toxicology, 2022. 42(3): p. 436–449.DOI: https://doi.org/10.1002/jat.4231.

  25. S. Amdekar, P. Roy, V. Singh, A. Kumar, R. Singh, and P. Sharma, Anti-inflammatory activity of lactobacillus on carrageenan-induced paw edema in male wistar rats International journal of inflammation, 2012. 2012.DOI: https://doi.org/10.1155/2012/752015.

  26. S. Kozlovskiy, E. Pislyagin, E. Menchinskaya, E. Chingizova, Y. Sabutski, S. Polonik, I. Agafonova, and D. Aminin, Antinociceptive effect and anti-inflammatory activity of 1, 4-naphthoquinones in mice. Exploration of Neuroscience, 2024. 3(1): p. 39–50.DOI: https://doi.org/10.37349/en.2024.00035.

    Article  Google Scholar 

  27. H. J. Jung, S. J. Kim, W. K. Jeon, B. C. Kim, K. Ahn, K. Kim, Y. M. Kim, E. H. Park, and C. J. Lim, Anti-inflammatory activity of n-propyl gallate through down-regulation of NF-κB and JNK pathways Inflammation, 2011. 34(5): p. 352 – 61.DOI: https://doi.org/10.1007/s10753-010-9241-0.

  28. J. Franzone, T. Natale, R. Cirillo, and M. Torrielli, Influence of propyl-gallate and 2-mercaptopropionylglycine on the development of acute inflammatory reactions and on biosynthesis of PGE2. Bollettino Della Societa Italiana di Biologia Sperimentale, 1980. 56(24): p. 2539–2545.

    CAS  PubMed  Google Scholar 

  29. C. Van der Heijden, P. Janssen, and J. Strik, Toxicology of gallates: a review and evaluation. Food and Chemical Toxicology, 1986. 24(10–11): p. 1067–1070.DOI: https://doi.org/10.1016/0278-6915(86)90290-5.

    Article  PubMed  Google Scholar 

  30. E. P. o. Additives, P. o. S. u. i. A. Feed, V. Bampidis, G. Azimonti, M. de Lourdes Bastos, H. Christensen, B. Dusemund, M. Kos Durjava, M. Kouba, M. López-Alonso, and S. López Puente, Safety and efficacy of propyl gallate for all animal species EFSA Journal, 2020. 18(4): p. e06069.DOI: https://doi.org/10.2903/j.efsa.2020.6069.

  31. M. Dhayalan, W. Wang, S. M. Riyaz, R. A. Dinesh, J. Shanmugam, S. S. Irudayaraj, A. Stalin, J. Giri, S. Mallik, and R. Hu, Advances in functional lipid nanoparticles: from drug delivery platforms to clinical applications 3 Biotech, 2024. 14(2): p. 57.DOI:https://doi.org/10.1007/s13205-023-03901-8.

  32. K. Dwiecki, P. Gornas, M. Nogala-Kalucka, and K. Polewski, Spectral properties of propyl gallate in organic solvents and in heterogeneous environment. Acta Agrophysica, 2006. 7(1 [132]).

Download references

Funding

We are thankful to the Higher Education Commission (HEC), Pakistan for the valuable support of this research project (Project No. 8263 NRPU 2017-18).

Author information

Authors and Affiliations

Authors

Contributions

S. Farah Shah conducted experiments, collected and analysed the underlying data, provide statistical analysis, drafted the manuscript. S. Shams, F. Naqvi and S. Qayyum contributed in biological experiments, T. Jabri, A. Jabbar, synthesized, and characterized lipposomal nanoformulation of compound, M. R. Shah supervised synthesis of nanoformulation. S. Faizi provide compound and contributed in manuscript revision. A. Jabeen contributed to the concept and design of the current study, analysed the biological data and interpreted the results, supervised the biology experiments, responsible for fund support and manuscript revision. All authors read and approved the submitted version of this article.

Corresponding author

Correspondence to Almas Jabeen.

Ethics declarations

Ethical Approval

The studies on cells from human blood were carried out after an approval from the independent ethics committee, ICCBS, UoK, No: ICCBS/IEC-008-BC-2015/Protocol/1.0. The blood of healthy human volunteers of 25–30 years’ age was used along with their informed consent. The animals (Wistar rats) used in this study were obtained from animal house facility, ICCBS, with prior approval of the study protocol from the ethical review committee of PCMD, ICCBS, University of Karachi (ASP # 2018-0023).

Conflict of Interest

The author declares that they have no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shah, S.F., Shams, S., Naqvi, F. et al. Lecithin Derived Nano-Propyl Gallate as Non-Toxic Anti-Inflammatory Agent: Synthesis, In-Vitro and In-Vivo Investigations. J Clust Sci (2024). https://doi.org/10.1007/s10876-024-02635-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10876-024-02635-8

Keywords

Navigation