Skip to main content
Log in

Facile Synthesis of CTAB Coated Au-Ag Core-Shell Nanoparticles and their Catalytic and Antibacterial Activity

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

This work reports the synthesis of cationic surfactant-coated Au-Ag core-shell (Au@Ag) nanoparticles (NPs) via a straightforward seed-mediated approach. The UV-Vis analysis showed that the plasmon peak position of synthesized Au@Ag NPs correlated with the thickness of the Ag shell encapsulating the Au core. The Au@Ag NPs have shown impressive catalytic performance for the reduction reactions of 4-nitrophenol (4-NP) and methyl orange (MO) where the apparent rate constant experienced a remarkable increase by 67-fold and 90-fold, respectively, when Au@Ag NPs with the Ag-shell thickness of 6.3 nm were employed as a catalyst, compared to Au NPs. This multifold improvement in the activity cannot be simply accounted for by the increase in surface area of NPs and is attributed to the electronic synergistic effects between Au and Ag in the core-shell NPs. Furthermore, while Au@Ag NPs exhibited heightened antibacterial activity against both Gram-positive S. aureus and Gram-negative E. coli bacteria, this enhancement is modest. Notably, the anticipated significant enhancement attributed to Ag's renowned antibacterial properties was not observed. The presence of cationic surfactant cetyltrimethylammonium bromide (CTAB) enables both Au and Au@Ag NPs to effectively bind with the negatively charged bacterial cell membranes through electrostatic interactions. Apparently, CTAB enables both types of NPs to effectively target and eliminate bacteria with comparable efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

Data is available on request.

References

  1. A. Abbaszadegan, Y. Ghahramani, A. Gholami, et al. (2015). The Effect of Charge at the Surface of Silver Nanoparticles on Antimicrobial Activity against Gram-Positive and Gram-Negative Bacteria: A Preliminary Study. J. Nanomater. 2015, 1–8.

    Article  Google Scholar 

  2. A. A. AbdelHamid, M. A. Al-Ghobashy, M. Fawzy, et al. (2013). Phytosynthesis of Au, Ag, and Au–Ag bimetallic nanoparticles using aqueous extract of sago pondweed (Potamogeton pectinatus L.). ACS Sustain Chem Eng 1, 1520–1529.

    Article  CAS  Google Scholar 

  3. A. Abdullah, M. Altaf, H. I. Khan, et al. (2018). Facile room temperature synthesis of multifunctional CTAB coated gold nanoparticles. Chem. Phys. 510, 30–36.

    Article  CAS  Google Scholar 

  4. T. Ahmad, I. A. Wani, N. Manzoor, et al. (2013). Biosynthesis, structural characterization and antimicrobial activity of gold and silver nanoparticles. Colloids Surfaces B Biointerfaces 107, 227–234.

    Article  CAS  PubMed  Google Scholar 

  5. S. A. Alzahrani, M. A. Malik, S. A. Al-Thabaiti, and Z. Khan (2018). Seedless synthesis and efficient recyclable catalytic activity of Ag@ Fe nanocomposites towards methyl orange. Appl Nanosci 8, 255–271.

    Article  CAS  Google Scholar 

  6. M. Azad, G. A. Khan, F. Ismail, and W. Ahmed (2022). Facile and efficient dye degradation using silver nanoparticles immobilized cotton substrates. Inorg Chem Commun 145, 109987.

    Article  CAS  Google Scholar 

  7. M. Banerjee, S. Sharma, A. Chattopadhyay, and S. S. Ghosh (2011). Enhanced antibacterial activity of bimetallic gold-silver core–shell nanoparticles at low silver concentration. Nanoscale 3, 5120–5125.

    Article  CAS  PubMed  Google Scholar 

  8. B. Baruah and M. Kiambuthi (2014). Facile synthesis of silver and bimetallic silver–gold nanoparticles and their applications in surface-enhanced Raman scattering. RSC Adv 4, 64860–64870.

    Article  CAS  Google Scholar 

  9. N. Berahim, W. J. Basirun, B. F. Leo, and M. R. Johan (2018). Synthesis of bimetallic gold-silver (Au-Ag) nanoparticles for the catalytic reduction of 4-nitrophenol to 4-aminophenol. Catalysts 8, 412.

    Article  Google Scholar 

  10. A. Carone, S. Emilsson, P. Mariani, et al. (2023). Gold nanoparticle shape dependence of colloidal stability domains. Nanoscale Adv 5, 2017–2026.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. B. Christina, K. Thanigaimani, R. Sudhakaran, et al. (2024). Pyto-Architechture of Ag, Au and Ag–Au bi-metallic nanoparticles using waste orange peel extract for enable carcinogenic Congo red dye degradation. Environ Res 242, 117625.

    Article  CAS  PubMed  Google Scholar 

  12. O. E. Cigarroa-Mayorga (2022). Enhancement of photocatalytic activity in ZnO NWs array due to Fe2O3 NPs electrodeposited on the nanowires surface: The role of ZnO-Fe2O3 interface. Mater Today Commun 33, 104879.

    Article  CAS  Google Scholar 

  13. Eivazzadeh-Keihan R, Saadatidizaji Z, Mahdavi M, et al (2024) Recent advances in gold nanoparticles-based biosensors for tuberculosis determination. Talanta 126099

  14. Y. Feng, Q. Shao, B. Huang, et al. (2018). Surface engineering at the interface of core/shell nanoparticles promotes hydrogen peroxide generation. Natl Sci Rev 5, 895–906.

    Article  CAS  Google Scholar 

  15. Y. Feng, G. Wang, Y. Chang, et al. (2019). Electron compensation effect suppressed silver ion release and contributed safety of Au@ Ag core–shell nanoparticles. Nano Lett 19, 4478–4489.

    Article  CAS  PubMed  Google Scholar 

  16. I. Fernando, T. Qian, and Y. Zhou (2019). Long term impact of surfactants & polymers on the colloidal stability, aggregation and dissolution of silver nanoparticles. Environ Res 179, 108781.

    Article  CAS  PubMed  Google Scholar 

  17. S. Guha, S. Roy, and A. Banerjee (2011). Fluorescent Au@ Ag core–shell nanoparticles with controlled shell thickness and HgII sensing. Langmuir 27, 13198–13205.

    Article  CAS  PubMed  Google Scholar 

  18. M. J. Hajipour, K. M. Fromm, A. A. Ashkarran, et al. (2012). Antibacterial properties of nanoparticles. Trends Biotechnol 30, 499–511.

    Article  CAS  PubMed  Google Scholar 

  19. K. K. Haldar, S. Kundu, and A. Patra (2014). Core-Size-Dependent Catalytic Properties of Bimetallic Au/Ag Core-Shell Nanoparticles. ACS Appl. Mater. interfaces 6, 21946–21953.

    Article  CAS  PubMed  Google Scholar 

  20. T. Hendel, M. Wuithschick, F. Kettemann, et al. (2014). In situ determination of colloidal gold concentrations with UV–Vis spectroscopy: limitations and perspectives. Anal Chem 86, 11115–11124.

    Article  CAS  PubMed  Google Scholar 

  21. M. S. Holden, K. E. Nick, M. Hall, et al. (2014). Synthesis and catalytic activity of pluronic stabilized silver–gold bimetallic nanoparticles. RSC Adv 4, 52279–52288.

    Article  CAS  PubMed  Google Scholar 

  22. P. K. Jain, X. Huang, I. H. El-Sayed, and M. A. El-Sayed (2007). Review of some interesting surface plasmon resonance-enhanced properties of noble metal nanoparticles and their applications to biosystems. Plasmonics 2, 107–118.

    Article  CAS  Google Scholar 

  23. H.-L. Jiang, T. Akita, T. Ishida, et al. (2011). Synergistic catalysis of Au@ Ag core− shell nanoparticles stabilized on metal− organic framework. J Am Chem Soc 133, 1304–1306.

    Article  CAS  PubMed  Google Scholar 

  24. P. Jiang, Y. Hu, and G. Li (2019). Biocompatible Au@ Ag nanorod@ ZIF-8 core-shell nanoparticles for surface-enhanced Raman scattering imaging and drug delivery. Talanta 200, 212–217.

    Article  CAS  PubMed  Google Scholar 

  25. A. S. Joshi, P. Singh, and I. Mijakovic (2020). Interactions of gold and silver nanoparticles with bacterial biofilms: Molecular interactions behind inhibition and resistance. Int J Mol Sci 21, 7658.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. S. Ke, C. Kan, Y. Ni, et al. (2019). Construction of silica-encapsulated gold-silver core-shell nanorod: Atomic facets enrichment and plasmon enhanced catalytic activity with high stability and reusability. Mater Des 177, 107837. https://doi.org/10.1016/j.matdes.2019.107837.

    Article  CAS  Google Scholar 

  27. Y. Khalavka, J. Becker, and C. Sönnichsen (2009). Synthesis of Rod-Shaped Gold Nanorattles with Improved Plasmon Sensitivity and Catalytic Activity. J. Am. Chem. Soc. 131, 1871–1875.

    Article  CAS  PubMed  Google Scholar 

  28. G. A. Khan, Ö. Demirtaş, A. Bek, and W. Ahmed (2023). Facile synthesis of Ag-coated Au-Ag nanoworms and their shell specific etching for enhanced catalytic activity. Mater Sci Eng B 297, 116737. https://doi.org/10.1016/j.mseb.2023.116737.

    Article  CAS  Google Scholar 

  29. Khan GA, Demirtaş OÖ, Bek A, et al (2022) Facile fabrication of Au-Ag alloy nanoparticles on filter paper: Application in SERS based swab detection and multiplexing. Vib Spectrosc 103359. https://doi.org/10.1016/j.vibspec.2022.103359

  30. G. A. Khan, E. N. Esentürk, A. Bek, et al. (2021). Fabrication of Highly Catalytically Active Gold Nanostructures on Filter-Paper and Their Applications towards Degradation of Environmental Pollutants. Chem. 6, 10655–10660.

    CAS  Google Scholar 

  31. A.-L. Kubo, I. Capjak, I. V. Vrček, et al. (2018). Antimicrobial potency of differently coated 10 and 50 nm silver nanoparticles against clinically relevant bacteria Escherichia coli and Staphylococcus aureus. Colloids surfaces, B, Biointerfaces 170, 401–410.

    Article  CAS  PubMed  Google Scholar 

  32. S. Kulkarni, M. Jadhav, P. Raikar, et al. (2019). Core–shell novel composite metal nanoparticles for hydrogenation and dye degradation applications. Ind Eng Chem Res 58, 3630–3639.

    Article  CAS  Google Scholar 

  33. Kumar KS, Kumar VB, Paik P (2013) Recent advancement in functional core-shell nanoparticles of polymers: synthesis, physical properties, and applications in medical biotechnology. J Nanoparticles 2013:

  34. Lin J-S, Radjenovic PM, Jin H, Li J-F (2021) Plasmonic core–shell nanoparticle enhanced spectroscopies for surface analysis

  35. Y. Liu, J. Zhou, B. Wang, et al. (2015). Au@ Ag core–shell nanocubes: epitaxial growth synthesis and surface-enhanced Raman scattering performance. Phys Chem Chem Phys 17, 6819–6826.

    Article  CAS  PubMed  Google Scholar 

  36. Mitsudome T (2021) Core–Shell Nanostructured Catalysts for Chemoselective Hydrogenations. In: Core-Shell and Yolk-Shell Nanocatalysts. Springer, pp 25–40

  37. D. M. Mott, D. T. N. Anh, P. Singh, et al. (2012). Electronic transfer as a route to increase the chemical stability in gold and silver core–shell nanoparticles. Adv Colloid Interface Sci 185, 14–33.

    Article  PubMed  Google Scholar 

  38. W. Mu, W. Fang, and Y. Yao (2021). Synthesis of Ag@ Au core–shell NPs loaded with Ciprofloxacin as enhanced antimicrobial properties for the treatment and nursing care of Escherichia coli infection. Microb Pathog 150, 104619.

    Article  CAS  PubMed  Google Scholar 

  39. Mughal HF, Khan GA, Shafiq M, et al (2024) Facile room-temperature synthesis of cetyltrimethylammonium bromide (CTAB) coated spherical silver nanoparticles and their surface-enhanced Raman scattering (SERS) and antibacterial applications. Chem Pap 1–9

  40. S. Nishimura, A. T. N. Dao, D. Mott, et al. (2012). X-ray absorption near-edge structure and X-ray photoelectron spectroscopy studies of interfacial charge transfer in gold–silver–gold double-shell nanoparticles. J Phys Chem C 116, 4511–4516.

    Article  CAS  Google Scholar 

  41. S. Panicker, I. M. Ahmady, C. Han, et al. (2020). On demand release of ionic silver from gold-silver alloy nanoparticles: fundamental antibacterial mechanisms study. Mater Today Chem 16, 100237.

    Article  CAS  Google Scholar 

  42. V. Pareek, A. Bhargava, R. Gupta, et al. (2017). Synthesis and applications of noble metal nanoparticles: a review. Adv Sci Eng Med 9, 527–544.

    Article  CAS  Google Scholar 

  43. H.-J. Park, J. Y. Kim, J. Kim, et al. (2009). Silver-ion-mediated reactive oxygen species generation affecting bactericidal activity. Water Res 43, 1027–1032.

    Article  CAS  PubMed  Google Scholar 

  44. X. Peng, Q. Pan, and G. L. Rempel (2008). Bimetallic dendrimer-encapsulated nanoparticles as catalysts: a review of the research advances. Chem Soc Rev 37, 1619–1628.

    Article  PubMed  PubMed Central  Google Scholar 

  45. D. Saldivar-Ayala, A. Ashok, O. E. Cigarroa-Mayorga, and Y. M. Hernández-Rodríguez (2023). Tuning the plasmon resonance of Au-Ag core-shell nanoparticles: The influence on the visible light emission for inorganic fluorophores application. Colloids Surfaces A Physicochem Eng Asp 677, 132359.

    Article  CAS  Google Scholar 

  46. L. Scarabelli, A. Sánchez-Iglesias, J. Pérez-Juste, and L. M. Liz-Marzán (2015). A “Tips and Tricks” Practical Guide to the Synthesis of Gold Nanorods. J. Phys. Chem. Lett. 6, 4270–4279.

    Article  CAS  PubMed  Google Scholar 

  47. C. Shankar, A. T. N. Dao, P. Singh, et al. (2012). Chemical stabilization of gold coated by silver core–shell nanoparticles via electron transfer. Nanotechnology 23, 245704.

    Article  PubMed  Google Scholar 

  48. G. A. Sotiriou, A. Meyer, J. T. N. Knijnenburg, et al. (2012). Quantifying the origin of released Ag+ ions from nanosilver. Langmuir 28, 15929–15936.

    Article  CAS  PubMed  Google Scholar 

  49. P. Suchomel, L. Kvitek, R. Prucek, et al. (2018). Simple size-controlled synthesis of Au nanoparticles and their size-dependent catalytic activity. Sci. reports 8, 4511–4589.

    Google Scholar 

  50. L. F. Tadesse, C.-S. Ho, D.-H. Chen, et al. (2020). Plasmonic and electrostatic interactions enable uniformly enhanced liquid bacterial surface-enhanced Raman scattering (SERS). Nano Lett 20, 7655–7661.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. D. Thi Ngoc Anh, P. Singh, C. Shankar, et al. (2011). Charge-transfer-induced suppression of galvanic replacement and synthesis of (Au@ Ag)@ Au double shell nanoparticles for highly uniform, robust and sensitive bioprobes. Appl Phys Lett 99, 73107.

    Article  Google Scholar 

  52. S. Tokonami, N. Morita, K. Takasaki, and N. Toshima (2010). Novel synthesis, structure, and oxidation catalysis of Ag/Au bimetallic nanoparticles. J Phys Chem C 114, 10336–10341.

    Article  CAS  Google Scholar 

  53. Ullah A, Khan GA, Ahmed W Remarkable Enhancement of the Catalytic Properties of Gold Nanostars with Silver Coating. Available SSRN 4314499

  54. A. Vinotha Alex, N. Chandrasekaran, and A. Mukherjee (2020). Novel enzymatic synthesis of core/shell AgNP/AuNC bimetallic nanostructure and its catalytic applications. J. Mol. Liq. 301, 112463.

    Article  CAS  Google Scholar 

  55. B. Xia, F. He, and L. Li (2013). Preparation of bimetallic nanoparticles using a facile green synthesis method and their application. Langmuir 29, 4901–4907.

    Article  CAS  PubMed  Google Scholar 

  56. Z. Xiu, Q. Zhang, H. L. Puppala, et al. (2012). Negligible particle-specific antibacterial activity of silver nanoparticles. Nano Lett 12, 4271–4275.

    Article  CAS  PubMed  Google Scholar 

  57. S. Yallappa, J. Manjanna, and B. L. Dhananjaya (2015). Phytosynthesis of stable Au, Ag and Au–Ag alloy nanoparticles using J. sambac leaves extract, and their enhanced antimicrobial activity in presence of organic antimicrobials. Spectrochim Acta Part A Mol Biomol Spectrosc 137, 236–243.

    Article  CAS  Google Scholar 

  58. L. Yang, W. Yan, H. Wang, et al. (2017). Shell thickness-dependent antibacterial activity and biocompatibility of gold@ silver core–shell nanoparticles. RSC Adv 7, 11355–11361.

    Article  CAS  Google Scholar 

  59. P. Yuan, R. Ma, N. Gao, et al. (2015). Plasmon coupling-enhanced two-photon photoluminescence of Au@ Ag core–shell nanoparticles and applications in the nuclease assay. Nanoscale 7, 10233–10239.

    Article  CAS  PubMed  Google Scholar 

  60. A. Zaleska-Medynska, M. Marchelek, M. Diak, and E. Grabowska (2016). Noble metal-based bimetallic nanoparticles: the effect of the structure on the optical, catalytic and photocatalytic properties. Adv Colloid Interface Sci 229, 80–107.

    Article  CAS  PubMed  Google Scholar 

  61. X. Zhang and Z. Su (2012). Polyelectrolyte-Multilayer-Supported Au@Ag Core-Shell Nanoparticles with High Catalytic Activity. Adv. Mater. 24, 4574–4577.

    Article  CAS  PubMed  Google Scholar 

  62. X. Zhuo, M. Henriksen-Lacey, D. Jimenez de Aberasturi, et al. (2020). Shielded Silver Nanorods for Bioapplications. Chem. Mater. 32, 5879–5889.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The authors would like to express their sincere gratitude to the Researchers Supporting Program, Project number (RSP-2024R518), King Saud University, Riyadh, Saudi Arabia. The authors thank the Higher Education Commission (HEC) Pakistan for the National Research Program for Universities (NRPU) grant no. 8380.

Author information

Authors and Affiliations

Authors

Contributions

Shaffaq Ashraf: Data curation, Formal analysis, Investigation, Methodology, Writing – original draft. Unsia Batool: Data curation, Investigation, Methodology, Writing – original draft. Ghazanfar Ali Khan: Validation, Data curation, Investigation, Methodology. Mamoona Azad: Validation Rabia Shahbaz: Data curation, Formal analysis, Investigation. Muhammad Imran: Resources, Formal analysis, Supervision Mohamed A. Ghanem: Supervision, Validation, Resources, Characterization, Writing – review & editing Khaled M. H. Mohammed: Validation, Methodology, Writing – review & editing Waqqar Ahmed: Conceptualization, Funding acquisition, Methodology, Project administration, Resources, Supervision, Visualization, Writing – review & editing.

Corresponding authors

Correspondence to Mohamed A. Ghanem or Waqqar Ahmed.

Ethics declarations

Ethical Approval

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ashraf, S., Batool, U., Khan, G.A. et al. Facile Synthesis of CTAB Coated Au-Ag Core-Shell Nanoparticles and their Catalytic and Antibacterial Activity. J Clust Sci (2024). https://doi.org/10.1007/s10876-024-02633-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10876-024-02633-w

Keywords

Navigation