Skip to main content
Log in

A Novel Approach for Efficient Water Oxidation and Supercapacitor Applications Based on Morphologically Transformed, Surface Rich Oxygen Vacancies of Co3o4 Nanostructures Co-Synthesized with Potato Starch Peel Extract

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

An emerging material, cobalt oxide (Co3O4) may be useful for a number of promising technological applications, including energy conversion and storage devices. Among the limiting factors of Co3O4 are its small surface area as well as its poor electrical conductivity. Our study describes the controllable synthesis of Co3O4 nanostructures using a renewable source in the form of potato peel extract, which is an abundant and inexpensive source of starch. Surface active features were observed along with significant changes in structure, crystal orientation, and surface chemical composition. As a result of detailed characterization of phase purity, shape orientation, crystal structure, and surface chemical composition, the as-synthesized Co3O4 nanostructures were fabricated as electrode materials and investigated for supercapacitors and oxygen evolution reactions (OER) applications. The optimized Co3O4 nanostructures comprising 10 mL of potato peel extract have demonstrated a highly improved pseudo-capacitance performance with a specific capacitance of 1453.13Fg− 1 and a specific energy density of 32.29 Wh/Kg at a current density of 1.25 Ag− 1 in 3.0 M KOH electrolytic solution. It was determined that the electrode materials have a cycling stability of 96–99% over 30,000 repeatable cycles with a columbic efficiency of 95–100%, which indicates the high practicality of the electrode materials. The OER performance of 10 mL of potato peel extract assisted Co3O4 nanostructures was also evaluated using 1.0 M KOH. An fabricated Co3O4 nanostructure derived from potato peel extract exhibited an overpotential of 260 mV at 10 mAcm− 2 and a Tafel slope of 72 mV dec− 1 in 1.0 M KOH. Furthermore, the constructed electrode material was extremely durable for a period of 30 h at two different constant-current densities of 20 mAcm− 2 and 40 mAcm− 2. Among the attributes that contribute to the superb performance of the newly developed Co3O4 electrode materials are the fascinating morphology, the reduced size, the enriched active surfaces, and the high degree of compatibility. Overall, the findings of this study establish that potato peel extract can serve as a valuable source of starch for the development of next-generation of electrode materials for efficient energy storage and conversion systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

Data sets generated during the current study are available from the corresponding author on reasonable request.

References

  1. Worku, A.K., Ayele, D.W., Habtu, N.G., Teshager, M.A. and Workineh, Z.G. (2021) Enhancing oxygen reduction reaction activity of ε-MnO2 nanoparticles via iron doping. Journal of Physics and Chemistry of Solids, 157, 110207. https://doi.org/10.1016/j.jpcs.2021.110207

    Article  CAS  Google Scholar 

  2. Zuo, W., Xie, C., Xu, P., Li, Y. and Liu, J. (2017) A Novel Phase-Transformation Activation Process toward Ni–Mn–O Nanoprism Arrays for 2.4 V Ultrahigh-Voltage Aqueous Supercapacitors. Advanced Materials, Wiley-VCH Verlag. 29. https://doi.org/10.1002/adma.201703463

  3. Worku, A.K., Ayele, D.W. and Habtu, N.G. (2021) Recent advances and future perspectives in engineering of bifunctional electrocatalysts for rechargeable zinc–air batteries. Materials Today Advances, 9, 100116. https://doi.org/10.1016/j.mtadv.2020.100116

    Article  CAS  Google Scholar 

  4. Yadav, A.A., Lokhande, A.C., Kim, J.H. and Lokhande, C.D. (2017) High electrochemical performance asymmetric supercapacitor based on La2O3//Co3O4 electrodes. Journal of Industrial and Engineering Chemistry, 56, 90–8. https://doi.org/10.1016/j.jiec.2017.06.051

    Article  CAS  Google Scholar 

  5. Iqbal, M.F., Yousef, A.K.M., Hassan, A., Hussain, S., Ashiq, M.N., Mahmood-Ul-Hassan et al. (2021) Significantly improved electrochemical characteristics of nickel sulfide nanoplates using graphene oxide thin film for supercapacitor applications. Journal of Energy Storage, 33, 102091. https://doi.org/10.1016/j.est.2020.102091

    Article  Google Scholar 

  6. Kumar, K.S., Choudhary, N., Pandey, D., Hurtado, L., Chung, H.S., Tetard, L. et al. (2020) High-performance flexible asymmetric supercapacitor based on rGO anode and WO3/WS2core/shell nanowire cathode. Nanotechnology, Institute of Physics Publishing. 31. https://doi.org/10.1088/1361-6528/aba305

  7. Liu, Y., Murtaza, I., Shuja, A. and Meng, H. (2020) Interfacial modification for heightening the interaction between PEDOT and substrate towards enhanced flexible solid supercapacitor performance. Chemical Engineering Journal, 379, 122326. https://doi.org/10.1016/j.cej.2019.122326

    Article  CAS  Google Scholar 

  8. Pal, M., Rakshit, R., Singh, A. and Mandal, K. (2016) Ultra high supercapacitance of ultra small Co3O4 nanocubes. Energy, 103, 481–6. https://doi.org/10.1016/j.energy.2016.02.139

    Article  CAS  Google Scholar 

  9. Shin, S. and Shin, M. (2021) Nickel metal–organic framework (Ni-MOF) derived NiO/C@CNF composite for the application of high performance self-standing supercapacitor electrode. Applied Surface Science, 540, 148295. https://doi.org/10.1016/j.apsusc.2020.148295

    Article  CAS  Google Scholar 

  10. Lokhande, P.E., Kulkarni, S., Chakrabarti, S., Pathan, H.M., Sindhu, M., Kumar, D. et al. (2022) The progress and roadmap of metal–organic frameworks for high-performance supercapacitors. Coordination Chemistry Reviews, 473, 214771. https://doi.org/10.1016/j.ccr.2022.214771

    Article  CAS  Google Scholar 

  11. Lakal, N., Dubal, S. and Lokhande, P.E. (2022) Chap. 22 - Supercapacitors: An introduction. In: Song H, Nguyen TA, Yasin G, Singh NB, and Gupta RKBT-N in the AI, editors. Micro and Nano Technologies, Elsevier. p. 459–66. https://doi.org/10.1016/B978-0-323-90524-4.00022-0

  12. Borenstein, A., Hanna, O., Attias, R., Luski, S., Brousse, T. and Aurbach, D. (2017) Carbon-based composite materials for supercapacitor electrodes: a review. Journal of Materials Chemistry A, The Royal Society of Chemistry. 5, 12653–72. https://doi.org/10.1039/C7TA00863E

    Article  CAS  Google Scholar 

  13. Kadam, V., Jagtap, C., Lokhande, P., Bulakhe, R., Kang, S.-W., Yadav, A. et al. (2023) One-step deposition of nanostructured Ni(OH)2/rGO for supercapacitor applications. Journal of Materials Science: Materials in Electronics, 34. https://doi.org/10.1007/s10854-023-10433-7

  14. Aadil, D., Zulfiqar, S., Agboola, P., Aboud, M., Shakir, I. and Warsi, M. (2021) Fabrication of graphene supported binary nanohybrid with multiple approaches for electrochemical energy storage applications. Synthetic Metals, 272, 116645. https://doi.org/10.1016/j.synthmet.2020.116645

    Article  CAS  Google Scholar 

  15. Chameh, B., Moradi, M., Hajati, S. and Hessari, F.A. (2021) Design and construction of ZIF(8 and 67) supported Fe3O4 composite as advanced materials of high performance supercapacitor. Physica E: Low-Dimensional Systems and Nanostructures, 126, 114442. https://doi.org/10.1016/j.physe.2020.114442

    Article  CAS  Google Scholar 

  16. Niu, W., Xiao, Z., Wang, S., Zhai, S., Qin, L., Zhao, Z. et al. (2020) Synthesis of nickel sulfide-supported on porous carbon from a natural seaweed-derived polysaccharide for high-performance supercapacitors. Journal of Alloys and Compounds, 853. https://doi.org/10.1016/j.jallcom.2020.157123

  17. Liu, Y., Wang, Y., Wang, H., Zhao, P., Hou, H. and Guo, L. (2019) Acetylene black enhancing the electrochemical performance of NiCo-MOF nanosheets for supercapacitor electrodes. Applied Surface Science, 492, 455–63. https://doi.org/10.1016/j.apsusc.2019.06.238

    Article  CAS  Google Scholar 

  18. Lukatskaya, M.R., Kota, S., Lin, Z., Zhao, M.-Q., Shpigel, N., Levi, M.D. et al. (2017) Ultra-high-rate pseudocapacitive energy storage in two-dimensional transition metal carbides. Nature Energy, 2, 17105. https://doi.org/10.1038/nenergy.2017.105

    Article  CAS  Google Scholar 

  19. Jiawen, J., Li, R., Li, H., Shu, Y., Li, Y., Qiu, S. et al. (2018) Phytic acid assisted fabrication of graphene/polyaniline composite hydrogels for high-capacitance supercapacitors. Composites Part B: Engineering, 155. https://doi.org/10.1016/j.compositesb.2018.08.037

  20. Zhou, J., Ye, S., Zeng, Q., Yang, H., Chen, J., Guo, Z. et al. (2020) Nitrogen and Phosphorus Co-doped Porous Carbon for High-Performance Supercapacitors. Frontiers in Chemistry, 8.

  21. Li, J., Zan, G. and Wu, Q. (2016) An ultra-high-performance anode material for supercapacitors: self-assembled long Co3O4 hollow tube network with multiple heteroatom (C-, N- and S-) doping. Journal of Materials Chemistry A, The Royal Society of Chemistry. 4, 9097–105. https://doi.org/10.1039/C6TA02376B

    Article  CAS  Google Scholar 

  22. Yadav, A.A., Lokhande, A.C., Kim, J.H. and Lokhande, C.D. (2016) Supercapacitive properties of nanoporous oxide layer formed on 304 type stainless steel. Journal of Colloid and Interface Science, 473, 22–7. https://doi.org/10.1016/j.jcis.2016.03.051

    Article  CAS  PubMed  Google Scholar 

  23. Anil Kumar, Y., Yadav, A.A., Al-Asbahi, B.A., Kang, S.W. and Moniruzzaman, M. (2022) Sulfur Nanoparticle-Decorated Nickel Cobalt Sulfide Hetero-Nanostructures with Enhanced Energy Storage for High-Performance Supercapacitors. Molecules, 27. https://doi.org/10.3390/molecules27217458

  24. Pettong, T., Iamprasertkun, P., Krittayavathananon, A., Suktha, P., Sirisinudomkit, P., Seubsai, A. et al. (2016) High-Performance Asymmetric Supercapacitors of MnCo2O4 Nanofibers and N-Doped Reduced Graphene Oxide Aerogel. ACS Applied Materials & Interfaces, 8. https://doi.org/10.1021/acsami.6b09440

  25. Shakir, I., Almutairi, Z. and Saad Shar, S. (2021) Fabrication of binary transition metal hydroxides and their nanocomposite with CNTs for electrochemical capacitor applications. Ceramics International, 47, 1191–8. https://doi.org/10.1016/j.ceramint.2020.08.237

    Article  CAS  Google Scholar 

  26. Sun, L., Fu, Q. and Pan, C. (2020) Mn3O4 embedded 3D multi-heteroatom codoped carbon sheets/carbon foams composites for high-performance flexible supercapacitors. Journal of Alloys and Compounds, 849, 156666. https://doi.org/10.1016/j.jallcom.2020.156666

    Article  CAS  Google Scholar 

  27. Lokhande, P.E., Chavan, U.S., Bhosale, S., Kalam, A. and Deokar, S. (2021) New-Generation Materials for Flexible Supercapacitors. Flexible Supercapacitor Nanoarchitectonics, 277–313. https://doi.org/10.1002/9781119711469.ch11

  28. Mirzazadeh Khomambazari, S., Lokhande, P., Padervand, S., Zaulkiflee, N.D., Irandoost, M., Dubal, S. et al. (2022) A review of recent progresses on nickel oxide/carbonous material composites as supercapacitor electrodes. Journal of Composites and Compounds, 4, 195–208. https://doi.org/10.52547/jcc.4.4.4

    Article  Google Scholar 

  29. Zhou, W., Han, G., Xiao, Y., Chang, Y., Yuan, W., Li, Y. et al. (2015) Polypyrrole doped with dodecyl benzene sulfonate electrodeposited on carbon fibers for flexible capacitors with high-performance. Electrochimica Acta, 176, 594–603. https://doi.org/10.1016/j.electacta.2015.07.026

    Article  CAS  Google Scholar 

  30. Jagtap, C., Kadam, V., Kamble, B., Lokhande, P.E., Pakdel, A., Kumar, D. et al. (2024) Synergistic growth of cobalt hydroxide on reduced graphene oxide/nickel foam for supercapacitor application. Journal of Energy Storage, 83, 110666. https://doi.org/10.1016/j.est.2024.110666

    Article  Google Scholar 

  31. Lokhande, P.E. and Chavan, U.S. (2020) Cyclic voltammetry behavior modeling of fabricated nanostructured Ni(OH)2 electrode using artificial neural network for supercapacitor application. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, IMECHE. 234, 2563–8. https://doi.org/10.1177/0954406220907615

  32. Lokhande, P.E., Chavan, U.S., Deokar, S., Ingale, M., Bhosale, S., Kale, S. et al. (2019) Surfactant free chemically deposited wheat spike-like nanostructure on Cu foam for supercapacitor applications. Materials Today: Proceedings, Elsevier. 18, 979–85.

  33. Worku, A.K., Ayele, D.W., Habtu, N.G. and Yemata, T.A. (2021) Engineering Co3O4/MnO2 nanocomposite materials for oxygen reduction electrocatalysis. Heliyon, 7, e08076. https://doi.org/10.1016/j.heliyon.2021.e08076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Worku, A.K., Ayele, D.W., Habtu, N.G., Teshager, M.A. and Workineh, Z.G. (2021) Recent progress in MnO2-based oxygen electrocatalysts for rechargeable zinc-air batteries. Materials Today Sustainability, 13, 100072. https://doi.org/10.1016/j.mtsust.2021.100072

    Article  Google Scholar 

  35. Faber, M.S. and Jin, S. (2014) Earth-abundant inorganic electrocatalysts and their nanostructures for energy conversion applications. Energy & Environmental Science, The Royal Society of Chemistry. 7, 3519–42. https://doi.org/10.1039/C4EE01760A

    Article  CAS  Google Scholar 

  36. Caparrós Mancera, J.J., Segura Manzano, F., Andújar, J.M., López, E. and Isorna, F. (2022) Sun, heat and electricity. A comprehensive study of non-pollutant alternatives to produce green hydrogen. International Journal of Energy Research, John Wiley & Sons, Ltd. 46, 17999–8028. https://doi.org/10.1002/er.8505

  37. Das, D. and Nanda, K.K. (2016) One-step, integrated fabrication of Co2P nanoparticles encapsulated N, P dual-doped CNTs for highly advanced total water splitting. Nano Energy, 30, 303–11. https://doi.org/10.1016/j.nanoen.2016.10.024

    Article  CAS  Google Scholar 

  38. Zhang, Y., Ouyang, B., Xu, J., Jia, G., Chen, S., Rawat, R.S. et al. (2016) Rapid Synthesis of Cobalt Nitride Nanowires: Highly Efficient and Low-Cost Catalysts for Oxygen Evolution. Angewandte Chemie (International Ed in English), 55, 8670–4. https://doi.org/10.1002/anie.201604372

    Article  CAS  PubMed  Google Scholar 

  39. Yadav, A.A., Hunge, Y.M. and Kang, S.-W. (2021) Highly efficient porous morphology of cobalt molybdenum sulfide for overall water splitting reaction. Surfaces and Interfaces, 23, 101020. https://doi.org/10.1016/j.surfin.2021.101020

    Article  CAS  Google Scholar 

  40. Chandra, D., Takama, D., Masaki, T., Sato, T., Abe, N., Togashi, T. et al. (2016) Highly Efficient Electrocatalysis and Mechanistic Investigation of Intermediate IrOx(OH)y Nanoparticle Films for Water Oxidation. ACS Catalysis, American Chemical Society. 6, 3946–54. https://doi.org/10.1021/acscatal.6b00621

    Article  CAS  Google Scholar 

  41. Iqbal, M.F., Jiang, Z., Muhammad, Z., Hassan, M.U., Li, G., Zhao, Y. et al. (2023) Electrocatalytic performance of copper selenide as structural phase dependent for hydrogen evolution reaction. International Journal of Hydrogen Energy, 48, 14730–41. https://doi.org/10.1016/j.ijhydene.2023.01.020

    Article  CAS  Google Scholar 

  42. Iqbal, M.F., Chen, Z., Zhao, Y., Razaq, A., Mahmood, S., Jiang, Z. et al. (2022) Mesoporous Strontium Hydroxide Hydrate as a Nanostructure-Dependent Electrocatalyst for Hydrogen Evolution Reaction. ACS Applied Nano Materials, American Chemical Society. 5, 18188–98. https://doi.org/10.1021/acsanm.2c04071

    Article  CAS  Google Scholar 

  43. Khavale, S. V and Lokhande, B.J. (2017) Electrochemical performance of potentio-dynamically deposited Co3O4 electrodes: influence of annealing temperature. Journal of Materials Science: Materials in Electronics, 28, 5106–15.

    CAS  Google Scholar 

  44. Sun, M., Li, Z., Li, H., Wu, Z., Shen, W. and Fu, Y.Q. (Richard). (2019) Mesoporous Zr-doped CeO2 nanostructures as superior supercapacitor electrode with significantly enhanced specific capacity and excellent cycling stability. Electrochimica Acta, 331, 135366. https://doi.org/10.1016/j.electacta.2019.135366

  45. Kolathodi, M., Palei, M., Natarajan, T. and Singh, G. (2020) MnO2 Encapsulated Electrospun TiO2 Nanofibers as Electrodes for Asymmetric Supercapacitors. Nanotechnology, 31. https://doi.org/10.1088/1361-6528/ab5d64

  46. Jung, H., Sang Jin, L., Han, D., Hong, A.-R., Jang, H., Lee, S. et al. (2019) Au-incorporated NiO nanocomposite thin films as electrochromic electrodes for supercapacitors. Electrochimica Acta, 330, 135203. https://doi.org/10.1016/j.electacta.2019.135203

    Article  CAS  Google Scholar 

  47. Yadav, A.A., Hunge, Y.M. and Kang, S.-W. (2021) Chemical synthesis of a microsphere-like copper molybdate electrode for oxygen evolution reaction. Surfaces and Interfaces, 26, 101425. https://doi.org/10.1016/j.surfin.2021.101425

    Article  CAS  Google Scholar 

  48. Iqbal, M.F., Ashiq, M.N., Hassan, M.-U., Nawaz, R., Masood, A. and Razaq, A. (2018) Excellent electrochemical behavior of graphene oxide based aluminum sulfide nanowalls for supercapacitor applications. Energy, 159, 151–9. https://doi.org/10.1016/j.energy.2018.06.123

    Article  CAS  Google Scholar 

  49. Iqbal, M.F., Ashiq, M.N., Razaq, A., Saleem, M., Parveen, B. and Hassan, M.-U. (2018) Excellent electrochemical performance of graphene oxide based strontium sulfide nanorods for supercapacitor applications. Electrochimica Acta, 273, 136–44. https://doi.org/10.1016/j.electacta.2018.04.014

    Article  CAS  Google Scholar 

  50. Yadav, A.A., Hunge, Y.M., Kulkarni, S.B., Terashima, C. and Kang, S.-W. (2020) Three-dimensional nanoflower–like hierarchical array of multifunctional copper cobaltate electrode as efficient electrocatalyst for oxygen evolution reaction and energy storage application. Journal of Colloid and Interface Science, 576, 476–85. https://doi.org/10.1016/j.jcis.2020.04.100

    Article  CAS  PubMed  Google Scholar 

  51. Liu, C., Li, Q., Zhang, Q., He, B., Man, P., Zhou, Z. et al. (2019) Surface-functionalized Fe2O3 nanowire arrays with enhanced pseudocapacitive performance as novel anode materials for high-energy-density fiber-shaped asymmetric supercapacitors. Electrochimica Acta, 330, 135247. https://doi.org/10.1016/j.electacta.2019.135247

    Article  CAS  Google Scholar 

  52. Yadav, A., Hunge, Y. and Kulkarni, S. (2018) Chemical synthesis of Co3O4 nanowires for symmetric supercapacitor device. Journal of Materials Science: Materials in Electronics, 29. https://doi.org/10.1007/s10854-018-9731-7

  53. Yang, X., Cai, C., Zou, Y., Xiang, C., Yan, E., Qiu, S. et al. (2020) Co3O4-doped two-dimensional carbon nanosheet as an electrode material for high-performance asymmetric supercapacitors. Electrochimica Acta, 335, 135611. https://doi.org/10.1016/j.electacta.2020.135611

    Article  CAS  Google Scholar 

  54. Laghari, A.J., Aftab, U., Tahira, A., Shah, A.A., Gradone, A., Solangi, M.Y. et al. (2022) MgO as promoter for electrocatalytic activities of Co3O4–MgO composite via abundant oxygen vacancies and Co2 + ions towards oxygen evolution reaction. International Journal of Hydrogen Energy, Pergamon. https://doi.org/10.1016/J.IJHYDENE.2022.04.169

  55. Lu, J., Li, J., Wan, J., Han, X., Ji, P., Luo, S. et al. (2021) A facile strategy of in-situ anchoring of Co3O4 on N doped carbon cloth for an ultrahigh electrochemical performance. Nano Research, 14, 2410–7. https://doi.org/10.1007/s12274-019-3242-6

    Article  CAS  Google Scholar 

  56. Wang, Wu, Z., Meng, Wu, Y., Shih, Y.-H. and Hong, X. (2020) Recent Advance in Co3O4 and Co3O4-Containing Electrode Materials for High-Performance Supercapacitors. Molecules, 25, 269. https://doi.org/10.3390/molecules25020269

    Article  CAS  Google Scholar 

  57. Yadav, A., Hunge, Y. and Kang, S.-W. (2020) Ultrasound assisted synthesis of highly active nanoflower-like CoMoS4 electrocatalyst for oxygen and hydrogen evolution reactions. Ultrasonics Sonochemistry, 72, 105454. https://doi.org/10.1016/j.ultsonch.2020.105454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Wang, J., Yang, H., Sun, Q., Zhou, C., Zhang, X., Ge, L. et al. (2021) Synthesis of δ-MnO2/C assisted with carbon sheets by directly carbonizing from corn stalk for high-performance supercapacitor. Materials Letters, 285, 129116. https://doi.org/10.1016/j.matlet.2020.129116

    Article  CAS  Google Scholar 

  59. Pudukudy, M. and Yaakob, Z. (2014) Sol-gel synthesis, characterisation, and photocatalytic activity of porous spinel Co3O4 nanosheets. Chemical Papers, 68. https://doi.org/10.2478/s11696-014-0561-7

  60. Farhadi, S., Javanmard, M. and Nadri, G. (2016) Characterization of Cobalt Oxide Nanoparticles Prepared by the Thermal Decomposition. Acta Chimica Slovenica, 63, 335–43. https://doi.org/10.17344/acsi.2016.2305

    Article  CAS  PubMed  Google Scholar 

  61. Janjua, M.R.S.A. (2019) Synthesis of Co3O4 Nano Aggregates by Co-precipitation Method and its Catalytic and Fuel Additive Applications. Open Chemistry, 17, 865–73. https://doi.org/10.1515/chem-2019-0100

    Article  CAS  Google Scholar 

  62. Oza, M. and Joshi, M.J. (2017) Hydrothermal synthesis of siderite nano-particles and characterizations. AIP Conference Proceedings, 1837, 040037. https://doi.org/10.1063/1.4982121

  63. Vijayakumar, S., Ponnalagi, A.K., Nagamuthu, S. and Muralidharan, G. (2013) Microwave assisted synthesis of Co3O4 nanoparticles for high-performance supercapacitors. Electrochimica Acta, 106, 500–5. https://doi.org/10.1016/j.electacta.2013.05.121

    Article  CAS  Google Scholar 

  64. Zhou, F., Liu, Q., Gu, J., Zhang, W. and Zhang, D. (2015) A facile low-temperature synthesis of highly distributed and size-tunable cobalt oxide nanoparticles anchored on activated carbon for supercapacitors. Journal of Power Sources, 273, 945–53. https://doi.org/10.1016/j.jpowsour.2014.09.168

    Article  CAS  Google Scholar 

  65. Chen, Y., Zhang, Y. and Fu, S. (2007) Synthesis and characterization of Co3O4 hollow spheres. Materials Letters, 61, 701–5. https://doi.org/10.1016/j.matlet.2006.05.046

    Article  CAS  Google Scholar 

  66. Liu, Y., Mi, C., Su, L. and Zhang, X. (2008) Hydrothermal synthesis of Co3O4 microspheres as anode material for lithium-ion batteries. Electrochimica Acta, 53, 2507–13. https://doi.org/10.1016/j.electacta.2007.10.020

    Article  CAS  Google Scholar 

  67. Suresh, S., Vennila, S., Anita Lett, J., Fatimah, I., Mohammad, F., Al-Lohedan, H.A. et al. (2022) Star fruit extract-mediated green synthesis of metal oxide nanoparticles. Inorganic and Nano-Metal Chemistry, Taylor & Francis. 52, 173–80. https://doi.org/10.1080/24701556.2021.1880437

    Article  CAS  Google Scholar 

  68. Huang, H., Wang, J., Zhang, J., Cai, J., Pi, J. and Xu, J.-F. (2021) Inspirations of Cobalt Oxide Nanoparticle Based Anticancer Therapeutics. Pharmaceutics, 13.

  69. Othi, N.A., Hanan, A., Solangi, M.Y., AlSalhi, M.S., Devanesan, S., Shar, M.A. et al. (2023) Facile preparation of amino acid-assisted Fe3O4 nanoparticles for low-density lipoprotein cholesterol removal. Chemical Papers, 77, 7749–59. https://doi.org/10.1007/s11696-023-03040-7

    Article  CAS  Google Scholar 

  70. Kumar, M., Kumar, V., Mustafa, S., Aftab, U., Laghari, Z.A., Jatoi, A.S. et al. (2023) Graphene-loaded nickel oxide nanocomposite as anode material for microbial fuel cell. Biomass Conversion and Biorefinery, 13, 13245–52. https://doi.org/10.1007/s13399-022-02474-5

    Article  CAS  Google Scholar 

  71. Raimundo, R.A., Lourenço, C.S., Câmara, N.T., Silva, T.R., Santos, J.R.D., Araújo, A.J.M. et al. (2023) Green synthesis of Co3O4 nanoparticles using psyllium husk (Plantago Ovata) and application as electrocatalyst for oxygen evolution reaction. Journal of Electroanalytical Chemistry, 932, 117218. https://doi.org/10.1016/j.jelechem.2023.117218

    Article  CAS  Google Scholar 

  72. Raimundo, R.A., Silva, J.N., Silva, T.R., Araújo, A.J.M., Oliveira, J.F.G.A., de Lima, L.C. et al. (2023) Green chemistry synthesis of Co3O4-CoO nanocomposite and electrochemical assessment for oxygen evolution reaction. Materials Letters, 341, 134196. https://doi.org/10.1016/j.matlet.2023.134196

    Article  CAS  Google Scholar 

  73. Laghari, A.J., Aftab, U., Shah, A.A., Solangi, M.Y., Abro, M.I., Al-Saeedi, S.I. et al. (2023) Surface modification of Co3O4 nanostructures using wide range of natural compounds from rotten apple juice for the efficient oxygen evolution reaction. International Journal of Hydrogen Energy, Hydrogen Energy Publications LLC. 1–13. https://doi.org/10.1016/j.ijhydene.2023.01.072

  74. Buazar, F., Bavi, M., Kroushawi, F., Halvani, M., Khaledi-Nasab, A. and Hossieni, S.A. (2016) Potato extract as reducing agent and stabiliser in a facile green one-step synthesis of ZnO nanoparticles. Journal of Experimental Nanoscience, 11, 175–84. https://doi.org/10.1080/17458080.2015.1039610

    Article  CAS  Google Scholar 

  75. Marco, J.F., Gancedo, J.R., Gracia, M., Gautier, J.L., Ríos, E.I., Palmer, H.M. et al. (2001) Cation distribution and magnetic structure of the ferrimagnetic spinel NiCo2O4. Journal of Materials Chemistry, The Royal Society of Chemistry. 11, 3087–93. https://doi.org/10.1039/B103135J

    Article  CAS  Google Scholar 

  76. Marco, J.F., Gancedo, J.R., Gracia, M., Gautier, J.L., Ríos, E. and Berry, F.J. (2000) Characterization of the Nickel Cobaltite, NiCo2O4, Prepared by Several Methods: An XRD, XANES, EXAFS, and XPS Study. Journal of Solid State Chemistry, 153, 74–81. https://doi.org/10.1006/jssc.2000.8749

    Article  CAS  Google Scholar 

  77. Hai, Z., Gao, L., Zhang, Q., Xu, H., Cui, D., Zhang, Z. et al. (2016) Facile synthesis of core–shell structured PANI-Co3O4 nanocomposites with superior electrochemical performance in supercapacitors. Applied Surface Science, 361, 57–62. https://doi.org/10.1016/j.apsusc.2015.11.171

    Article  CAS  Google Scholar 

  78. Meher, S.K., Justin, P. and Ranga Rao, G. (2011) Microwave-Mediated Synthesis for Improved Morphology and Pseudocapacitance Performance of Nickel Oxide. ACS Applied Materials & Interfaces, American Chemical Society. 3, 2063–73. https://doi.org/10.1021/am200294k

    Article  CAS  Google Scholar 

  79. Sitler, S.J., Raja, K.S., Karmiol, Z. and Chidambaram, D. (2017) Self-ordering dual-layered honeycomb nanotubular titania: Enhanced structural stability and energy storage capacity. Applied Surface Science, 401, 127–41. https://doi.org/10.1016/j.apsusc.2016.12.222

    Article  CAS  Google Scholar 

  80. Zhang, G., Qin, P., Nasser, R., Li, S., Chen, P. and Song, J. (2020) Synthesis of Co(CO3)0.5(OH)/Ni2(CO3)(OH)2 nanobelts and their application in flexible all-solid-state asymmetric supercapacitor. Chemical Engineering Journal, 387, 124029. https://doi.org/10.1016/j.cej.2020.124029

    Article  CAS  Google Scholar 

  81. Zhang, G.-F., Qin, P. and Song, J.-M. (2019) Facile fabrication of Al2O3-doped Co3O4/graphene nanocomposites for high performance asymmetric supercapacitors. Applied Surface Science, 493, 55–62. https://doi.org/10.1016/j.apsusc.2019.06.288

    Article  CAS  Google Scholar 

  82. Iqbal, M.Z., Shaheen, M., Aftab, U., Ahmad, Z., Solangi, M.Y., Abro, M.I. et al. (2024) Faradically Dominant Pseudocapacitive Manganese Cobalt Oxide Electrode Materials for Hybrid Supercapacitors and Electrochemical Water Splitting. Energy & Fuels, American Chemical Society. 38, 2416–25. https://doi.org/10.1021/acs.energyfuels.3c03444

    Article  CAS  Google Scholar 

  83. Kumar, S., Tahira, A., Bhatti, A.L., Bhatti, M.A., Ujjan, Z.A., Aftab, U. et al. (2024) Oxygen vacancies and tailored redox activity encountered with NiCo2O4 nanostructures for promising applications in supercapacitor and water oxidation. Journal of Energy Storage, 77, 109994. https://doi.org/10.1016/j.est.2023.109994

    Article  Google Scholar 

  84. Huang, D., Liu, H., Li, T. and Niu, Q. (2019) Template-free synthesis of NiO skeleton crystal octahedron and effect of surface depression on electrochemical performance. Journal of Sol-Gel Science and Technology, 89, 511–20. https://doi.org/10.1007/s10971-018-4908-3

    Article  CAS  Google Scholar 

  85. Sharma, M., Adalati, R., Kumar, A., Chawla, V. and Chandra, R. (2021) Elevated performance of binder-free Co3O4 electrode for the supercapacitor applications. Nano Express, IOP Publishing. 2, 010002. https://doi.org/10.1088/2632-959X/abd686

    Article  Google Scholar 

  86. Kumar, R., Soam, A. and Sahajwalla, V. (2021) Carbon coated cobalt oxide (CC-CO3O4) as electrode material for supercapacitor applications. Materials Advances, RSC. 2, 2918–23. https://doi.org/10.1039/D1MA00120E

    Article  CAS  Google Scholar 

  87. Gaire, M., Khatoon, N. and Chrisey, D. (2021) Preparation of cobalt oxide–reduced graphitic oxide supercapacitor electrode by photothermal processing. Nanomaterials, MDPI AG. 11, 1–16. https://doi.org/10.3390/nano11030717

    Article  CAS  Google Scholar 

  88. Kim, Y.K., Cha, S.I. and Hong, S.H. (2013) Nanoporous cobalt foam and a Co/Co(OH)2 core–shell structure for electrochemical applications. Journal of Materials Chemistry A, The Royal Society of Chemistry. 1, 9802–8. https://doi.org/10.1039/C3TA11062A

    Article  CAS  Google Scholar 

  89. Mirzaeian, M., Akhanova, N., Gabdullin, M., Kalkozova, Z., Tulegenova, A., Nurbolat, S. et al. (2020) Improvement of the Pseudocapacitive Performance of Cobalt Oxide-Based Electrodes for Electrochemical Capacitors. Energies, 13. https://doi.org/10.3390/en13195228

  90. Niveditha, C. V, Aswini, R., Jabeen Fatima, M.J., Ramanarayan, R., Pullanjiyot, N. and Swaminathan, S. (2018) Feather like highly active Co3O4 electrode for supercapacitor application: a potentiodynamic approach. Materials Research Express, IOP Publishing. 5, 065501. https://doi.org/10.1088/2053-1591/aac5a7

    Article  CAS  Google Scholar 

  91. Liu, T. -C., Pell, W.G., Conway, B.E. and Roberson, S.L. (1998) Behavior of Molybdenum Nitrides as Materials for Electrochemical Capacitors: Comparison with Ruthenium Oxide. Journal of The Electrochemical Society, The Electrochemical Society, Inc. 145, 1882. https://doi.org/10.1149/1.1838571

    Article  CAS  Google Scholar 

  92. Wang, J., Polleux, J., Lim, J. and Dunn, B. (2007) Pseudocapacitive Contributions to Electrochemical Energy Storage in TiO2 (Anatase) Nanoparticles. The Journal of Physical Chemistry C, American Chemical Society. 111, 14925–31. https://doi.org/10.1021/jp074464w

    Article  CAS  Google Scholar 

  93. Ali, S., Zhang, X., Javed, M.S., Zhang, X., Liu, G., Wei, X. et al. (2022) 2H-MoS2 nanosheets-based binder-free electrode material for supercapacitor. Journal of Applied Physics, 132, 145001. https://doi.org/10.1063/5.0100522

    Article  CAS  Google Scholar 

  94. Rodenbough, P.P., Zheng, C., Liu, Y., Hui, C., Xia, Y., Ran, Z. et al. (2017) Lattice Expansion in Metal Oxide Nanoparticles: MgO, Co3O4, & Fe3O4. Journal of the American Ceramic Society, 100, 384–92. https://doi.org/10.1111/jace.14478

    Article  CAS  Google Scholar 

  95. Sivaraman, P., Mishra, S.P., Potphode, D.D., Thakur, A.P., Shashidhara, K., Samui, A.B. et al. (2015) A supercapacitor based on longitudinal unzipping of multi-walled carbon nanotubes for high temperature application. RSC Advances, The Royal Society of Chemistry. 5, 83546–57. https://doi.org/10.1039/C5RA13136G

    Article  CAS  Google Scholar 

  96. Yu, L. and Ren, Z. (2020) Systematic study of the influence of iR compensation on water electrolysis. Materials Today Physics, 14, 100253. https://doi.org/10.1016/j.mtphys.2020.100253

    Article  Google Scholar 

  97. Wang, J., Qiu, T., Chen, X., Lu, Y. and Yang, W. (2014) Hierarchical hollow urchin-like NiCo2O4 nanomaterial as electrocatalyst for oxygen evolution reaction in alkaline medium. Journal of Power Sources, 268, 341–8. https://doi.org/10.1016/j.jpowsour.2014.06.034

    Article  CAS  Google Scholar 

  98. Yu, L., Yang, J.F., Guan, B.Y., Lu, Y. and Lou, X.W.D. (2018) Hierarchical Hollow Nanoprisms Based on Ultrathin Ni-Fe Layered Double Hydroxide Nanosheets with Enhanced Electrocatalytic Activity towards Oxygen Evolution. Angewandte Chemie - International Edition, Wiley-VCH Verlag. 57, 172–6. https://doi.org/10.1002/anie.201710877

    Article  CAS  Google Scholar 

  99. Park, D.-H., Kim, M.-H., Lee, H.-J., Lee, W.-J., Byeon, J.-H., Kim, J.-H. et al. (2022) Development of Ni-Ir Oxide Composites as Oxygen Catalysts for an Anion-Exchange Membrane Water Electrolyzer. Advanced Materials Interfaces, John Wiley & Sons, Ltd. 9, 2102063. https://doi.org/10.1002/admi.202102063

  100. Kang, T. and Kim, J. (2021) Optimal cobalt-based catalyst containing high-ratio of oxygen vacancy synthesized from metal-organic-framework (MOF) for oxygen evolution reaction (OER) enhancement. Applied Surface Science, 560, 150035. https://doi.org/10.1016/j.apsusc.2021.150035

    Article  CAS  Google Scholar 

  101. Connor, P., Schuch, J., Kaiser, B. and Jaegermann, W. (2020) The Determination of Electrochemical Active Surface Area and Specific Capacity Revisited for the System MnOx as an Oxygen Evolution Catalyst. 234, 979–94. https://doi.org/10.1515/zpch-2019-1514

  102. Kim, Y.J., Lim, A., Kim, J.M., Lim, D., Chae, K.H., Cho, E.N. et al. (2020) Highly efficient oxygen evolution reaction via facile bubble transport realized by three-dimensionally stack-printed catalysts. Nature Communications, 11, 4921. https://doi.org/10.1038/s41467-020-18686-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Egelund, S., Caspersen, M., Nikiforov, A. and Møller, P. (2016) Manufacturing of a LaNiO3 composite electrode for oxygen evolution in commercial alkaline water electrolysis. International Journal of Hydrogen Energy, 41, 10152–60. https://doi.org/10.1016/j.ijhydene.2016.05.013

    Article  CAS  Google Scholar 

  104. Qi, J., Zhang, W., Xiang, R., Liu, K., Wang, H.-Y., Chen, M. et al. (2015) Porous Nickel–Iron Oxide as a Highly Efficient Electrocatalyst for Oxygen Evolution Reaction. Advanced Science, John Wiley & Sons, Ltd. 2, 1500199. https://doi.org/10.1002/advs.201500199

  105. Mosa, I.M., Biswas, S., El-Sawy, A.M., Botu, V., Guild, C., Song, W. et al. (2016) Tunable mesoporous manganese oxide for high performance oxygen reduction and evolution reactions. Journal of Materials Chemistry A, The Royal Society of Chemistry. 4, 620–31. https://doi.org/10.1039/C5TA07878D

    Article  CAS  Google Scholar 

  106. Pan, J., Dong, Z., Wang, B., Jiang, Z., Zhao, C., Wang, J. et al. (2019) The enhancement of photocatalytic hydrogen production via Ti3 + self-doping black TiO2/g-C3N4 hollow core-shell nano-heterojunction. Applied Catalysis B: Environmental, 242, 92–9. https://doi.org/10.1016/j.apcatb.2018.09.079

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to gratefully acknowledge the Higher Education Commission Pakistan for partial support under the project NRPU/8350/8330. We also extend our sincere appreciation to the Researchers Supporting Project Number (RSP2024R79) at King Saud University, Riyadh, Saudi Arabia. Brigitte Vigolo and Mélanie Emo would like to thank the platform “Microscopies, Microprobes and Metallography (3 M)” (Institut Jean Lamour, IJL, Nancy, France) for access to TEM and SEM facilities. Authors would also like to acknowledge partial funding of the Ajman University, Grants ID: DRG ref. 2023-IRG-HBS-2 (RESHUSC-001), RTG-2023-HBS-1 (Phase 1). This publication is part of the R&D project PID2021-126235OB-C32 funded by MCIN/AEI/https://doi.org/10.13039/501100011033/ and FEDER funds.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

Abdul Jaleel Laghari; material synthesis and partial electrochemical tests. Umair Aftab; partial co-supervision. Aneela Tahira; XRD analysis and wrote the draft. Muhammad Yameen Solangi; partial electrochemical tests. Ahmed Ali Hulio; EIS analysis. Ghulam Mustafa Thebo, validated the results Muhammad Ishaque Abro; co-supervision. Muhammad Ali Bhatti; partial analysis of electrochemical results. Susheel Kumar; energy storage-related measurements. Elmuez Dawi; revision of the manuscript, electrochemical testing. Ayman Nafady; analysis of storage energy results. Antonia Infantes-Molina; XPS measurement and wrote the draft. Melanie Emo; TEM measurement and wrote the draft. Brigitte Vigolo; SEM and EDS measurement and wrote the draft. Zafar Hussain Ibupoto; the main supervisor, wrote the first draft of the manuscript.

Corresponding authors

Correspondence to Muhammad Ishaque Abro or Zafar Hussain Ibupoto.

Ethics declarations

Ethical Approval

Not applicable.

Conflict of Interest

Authors declare no competing interests in the resented research work.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Laghari, A.J., Aftab, U., Tahira, A. et al. A Novel Approach for Efficient Water Oxidation and Supercapacitor Applications Based on Morphologically Transformed, Surface Rich Oxygen Vacancies of Co3o4 Nanostructures Co-Synthesized with Potato Starch Peel Extract. J Clust Sci (2024). https://doi.org/10.1007/s10876-024-02631-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10876-024-02631-y

Keywords

Navigation