Skip to main content
Log in

A Floral Revolution: Unveiling the Potential and Catalytic Brilliance of Bimetallic Nanoflowers

  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

The novel flower shaped nanomaterials, known as Nanoflowers (NFs), have attracted the interest of the scientific community around the world with their unique morphology, ease of synthesis, large surface-to-volume ratio, and high electron conductivity, making them a promising nanomaterial for various relevant applications. Bimetallic NFs comprise of two different metallic elements, with superior properties due to the synergistic effect between the hereditary properties of the constituent metal atoms. Bimetallic NFs can be synthesized through various methods, each offering unique advantages. Conventional methods provide a traditional approach to NF synthesis, while electrodeposition methods offer precise control over NF morphology and composition. Biological methods harness the power of biological systems for green and sustainable NF synthesis. Various characterization techniques for identifying the morphology of NFs include HR-TEM, SEM, EDX, XRD etc. These NFs exhibit exemplary catalytic activity with high selectivity and catalytic yield due to their large surface areas and augmented active site density. This review delineates the synthesis, morphology, electronic properties and catalytic applications of bimetallic NFs. The manuscript depicts various catalytic reactions and focuses on mechanism and role of bimetallic NFs in these reactions. Moreover, the recent challenges and future prospects of these bimetallic NFs are well discussed in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 14
Fig. 15
Fig. 16

Reproduced with permission from ref.

Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

Data Availability

No datasets were generated or analysed during the current study.

References

  1. S. Hagos Gebre and M. Getaye Sendeku (2022). Trimetallic Nanostructures and Their Applications in Electrocatalytic Energy Conversions. J. Energy Chem. 65, 329–351. https://doi.org/10.1016/J.JECHEM.2021.06.006.

    Article  CAS  Google Scholar 

  2. P. Guo, K. Liu, X. Liu, R. Liu, and Z. Yin (2023). Perspectives on Cu-Ag Bimetallic Catalysts for Electrochemical CO2 Reduction Reaction: A Mini-Review. Energy and Fuels. https://doi.org/10.1021/ACS.ENERGYFUELS.3C05194/ASSET/IMAGES/MEDIUM/EF3C05194_0012.GIF.

    Article  Google Scholar 

  3. Srivastava, S.; Bhargava, A. Green Nanotechnology: An Overview. Green Nanoparticles Futur. Nanobiotechnology 2022, 1–13. https://doi.org/10.1007/978-981-16-7106-7_1.

  4. Dahman, Y.; Ignatius, N.; Poblete, A.; Krunic, A.; Ma, P.; Gosalia, N.; Ali, T.; Dahman, Y. Nanotechnology: Application and Potentials for Heterogeneous Catalysis. Nanotechnol. Pap. Wood Eng. Fundam. Challenges Appl. 2022, 231–263. https://doi.org/10.1016/B978-0-323-85835-9.00013-1.

  5. Y. Xia, Y. Xiong, B. Lim, and S. E. Skrabalak (2009). Shape-Controlled Synthesis of Metal Nanocrystals: Simple Chemistry Meets Complex Physics? Angew. Chemie Int. Ed. 48 (1), 60–103. https://doi.org/10.1002/ANIE.200802248.

    Article  CAS  Google Scholar 

  6. L. Yang, Z. Zhou, J. Song, and X. Chen (2019). Anisotropic Nanomaterials for Shape-Dependent Physicochemical and Biomedical Applications. Chem. Soc. Rev. 48 (19), 5140–5176. https://doi.org/10.1039/C9CS00011A.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kustov, L. M. Catalysis by Hybrid Nanomaterials. Mol. 2021, Vol. 26, Page 352 2021, 26 (2), 352. https://doi.org/10.3390/MOLECULES26020352.

  8. S. A. H. Martínez, E. M. Melchor-Martínez, J. A. R. Hernández, R. Parra-Saldívar, and H. M. N. Iqbal (2022). Magnetic Nanomaterials Assisted Nanobiocatalysis Systems and Their Applications in Biofuels Production. Fuel 312, 122927. https://doi.org/10.1016/J.FUEL.2021.122927.

    Article  Google Scholar 

  9. P. C. Ray (2010). Size and Shape Dependent Second Order Nonlinear Optical Properties of Nanomaterials and Their Application in Biological and Chemical Sensing. Chem. Rev. 110 (9), 5332–5365. https://doi.org/10.1021/CR900335Q/ASSET/CR900335Q.FP.PNG_V03.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. S. H. Gebre (2022). Synthesis and Potential Applications of Trimetallic Nanostructures. New J. Chem. 46 (12), 5438–5459. https://doi.org/10.1039/D1NJ06074K.

    Article  CAS  Google Scholar 

  11. B. Kharisov (2008). A Review for Synthesis of Nanoflowers. Recent Pat. Nanotechnol. 2 (3), 190–200. https://doi.org/10.2174/187221008786369651.

    Article  CAS  PubMed  Google Scholar 

  12. G. Sharma, D. Kumar, A. Kumar, A. H. Al-Muhtaseb, D. Pathania, M. Naushad, and G. T. Mola (2017). Revolution from Monometallic to Trimetallic Nanoparticle Composites, Various Synthesis Methods and Their Applications: A Review. Mater. Sci. Eng. C 71, 1216–1230. https://doi.org/10.1016/J.MSEC.2016.11.002.

    Article  CAS  Google Scholar 

  13. E. A. Redina, G. I. Kapustin, O. P. Tkachenko, A. A. Greish, and L. M. Kustov (2021). Effect of Ultra-Low Amount of Gold in Oxide-Supported Bimetallic Au–Fe and Au–Cu Catalysts on Liquid-Phase Aerobic Glycerol Oxidation in Water. Catal. Sci. Technol. 11 (17), 5881–5897. https://doi.org/10.1039/D1CY00674F.

    Article  CAS  Google Scholar 

  14. H. Zhou, X. Yang, L. Li, X. Liu, Y. Huang, X. Pan, A. Wang, J. Li, and T. Zhang (2016). PdZn Intermetallic Nanostructure with Pd-Zn-Pd Ensembles for Highly Active and Chemoselective Semi-Hydrogenation of Acetylene. ACS Catal. 6 (2), 1054–1061. https://doi.org/10.1021/ACSCATAL.5B01933/SUPPL_FILE/CS5B01933_SI_001.PDF.

    Article  CAS  Google Scholar 

  15. Lee, S. W.; Cheon, S. A.; Kim, M. Il; Park, T. J. Organic-Inorganic Hybrid Nanoflowers: Types, Characteristics, and Future Prospects. J. Nanobiotechnology 2015, 13 (1), 1–10. https://doi.org/10.1186/S12951-015-0118-0/FIGURES/8.

  16. H. Wang, X. Liu, P. Niu, S. Wang, J. Shi, and L. Li (2020). Porous Two-Dimensional Materials for Photocatalytic and Electrocatalytic Applications. Matter 2 (6), 1377–1413. https://doi.org/10.1016/J.MATT.2020.04.002.

    Article  Google Scholar 

  17. X. Zhao, Y. Chang, W. J. Chen, Q. Wu, X. Pan, K. Chen, and B. Weng (2022). Recent Progress in Pd-Based Nanocatalysts for Selective Hydrogenation. ACS Omega 7 (1), 17–31. https://doi.org/10.1021/ACSOMEGA.1C06244/ASSET/IMAGES/LARGE/AO1C06244_0009.JPEG.

    Article  CAS  PubMed  Google Scholar 

  18. N. Eom, M. E. Messing, J. Johansson, and K. Deppert (2021). General Trends in Core-Shell Preferences for Bimetallic Nanoparticles. ACS Nano 15 (5), 8883–8895. https://doi.org/10.1021/ACSNANO.1C01500/SUPPL_FILE/NN1C01500_SI_002.PDF.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. V. Tripkovic, J. Zheng, G. A. Rizzi, C. Marega, C. Durante, J. Rossmeisl, and G. Granozzi (2015). Comparison between the Oxygen Reduction Reaction Activity of Pd5Ce and Pt5Ce: The Importance of Crystal Structure. ACS Catal. 5 (10), 6032–6040. https://doi.org/10.1021/ACSCATAL.5B01254/ASSET/IMAGES/MEDIUM/CS-2015-01254M_0005.GIF.

    Article  CAS  Google Scholar 

  20. L. Wang, Y. Nemoto, and Y. Yamauchi (2011). Direct Synthesis of Spatially-Controlled Pt-on-Pd Bimetallic Nanodendrites with Superior Electrocatalytic Activity. J. Am. Chem. Soc. 133 (25), 9674–9677. https://doi.org/10.1021/JA202655J/SUPPL_FILE/JA202655J_SI_001.PDF.

    Article  CAS  PubMed  Google Scholar 

  21. J. Hu, R. Li, X. Wang, S. Wang, and C. Fang (2023). Strain-Induced Porous Pd@PdPt Core/Shell Nanocubes as Effective All-in-One Electrocatalysts toward Multialcohol Oxidation. ACS Appl. Nano Mater. 6 (12), 10213–10222. https://doi.org/10.1021/ACSANM.3C00969/SUPPL_FILE/AN3C00969_SI_001.PDF.

    Article  CAS  Google Scholar 

  22. M. M. Pohl, J. Radnik, M. Schneider, U. Bentrup, D. Linke, A. Brückner, and E. Ferguson (2009). Bimetallic PdAu–KOac/SiO2 Catalysts for Vinyl Acetate Monomer (VAM) Synthesis: Insights into Deactivation under Industrial Conditions. J. Catal. 262 (2), 314–323. https://doi.org/10.1016/J.JCAT.2009.01.008.

    Article  CAS  Google Scholar 

  23. Li, A.; Duan, W.; Liu, J.; Zhuo, K.; Chen, Y.; Wang, J. Electrochemical Synthesis of AuPt Nanoflowers in Deep Eutectic Solvent at Low Temperature and Their Application in Organic Electro-Oxidation. Sci. Reports 2018 81 2018, 8 (1), 1–9. https://doi.org/10.1038/s41598-018-31402-9.

  24. B. I. Kharisov (2008). A Review for Synthesis of Nanoflowers. Recent Pat. Nanotechnol. 2 (3), 190–200. https://doi.org/10.2174/187221008786369651.

    Article  CAS  PubMed  Google Scholar 

  25. Shi, L.; Wang, Z.; Bai, L.; Yang, G. Preparation of 3D Nanoflower-like ZnO/Graphene Oxide Decorated with Au@AuPt Bimetallic Nanoparticles for Electrochemical Determination of Doxorubicin Hydrochloride. Int. J. Electrochem. Sci. 2022, 17 (1), 220144. https://doi.org/10.20964/2022.1.45.

  26. Imura, Y.; Akiyama, R.; Furukawa, S.; Kan, R.; Morita-Imura, C.; Komatsu, T.; Kawai, T. Au–Ag Nanoflower Catalysts with Clean Surfaces for Alcohol Oxidation. Chem. – An Asian J. 2019, 14 (4), 547–552. https://doi.org/10.1002/ASIA.201801711.

  27. L. Li and Y. Xing (2007). Pt-Ru Nanoparticles Supported on Carbon Nanotubes as Methanol Fuel Cell Catalysts. J. Phys. Chem. C 111 (6), 2803–2808. https://doi.org/10.1021/JP0655470/SUPPL_FILE/JP0655470SI20061211_024928.PDF.

    Article  CAS  Google Scholar 

  28. R. Su, R. Tiruvalam, Q. He, N. Dimitratos, L. Kesavan, C. Hammond, J. A. Lopez-Sanchez, R. Bechstein, C. J. Kiely, G. J. Hutchings, et al. (2012). Promotion of Phenol Photodecomposition over TiO 2 Using Au, Pd, and Au-Pd Nanoparticles. ACS Nano 6 (7), 6284–6292. https://doi.org/10.1021/NN301718V/SUPPL_FILE/NN301718V_SI_001.PDF.

    Article  CAS  PubMed  Google Scholar 

  29. S. Hu, C. Dong, Z. Deng, M. Xing, and J. Zhang (2021). Tuning Reaction Pathway of CO2Photoreduction via PtRu Bimetallic Microstructure Regulation. J. Phys. Chem. C 125 (19), 10406–10412. https://doi.org/10.1021/ACS.JPCC.1C02769/SUPPL_FILE/JP1C02769_SI_001.PDF.

    Article  CAS  Google Scholar 

  30. H. L. Xin, J. A. Mundy, Z. Liu, R. Cabezas, R. Hovden, L. F. Kourkoutis, J. Zhang, N. P. Subramanian, R. Makharia, F. T. Wagner, et al. (2012). Atomic-Resolution Spectroscopic Imaging of Ensembles of Nanocatalyst Particles across the Life of a Fuel Cell. Nano Lett. 12 (1), 490–497. https://doi.org/10.1021/NL203975U/SUPPL_FILE/NL203975U_SI_002.MPG.

    Article  CAS  PubMed  Google Scholar 

  31. Chen, H.; Liu, J.; Wu, X.; Ye, C.; Zhang, J.; Luo, J. L.; Fu, X. Z. Pt-Co Electrocatalysts: Syntheses, Morphologies, and Applications. Small 2022, 18 (40). https://doi.org/10.1002/SMLL.202204100.

  32. P. K. Jain, X. Huang, I. H. El-Sayed, and M. A. El-Sayed (2008). Noble Metals on the Nanoscale: Optical and Photothermal Properties and Some Applications in Imaging, Sensing, Biology, and Medicine. Acc. Chem. Res. 41 (12), 1578–1586. https://doi.org/10.1021/AR7002804/ASSET/IMAGES/MEDIUM/AR-2007-002804_0001.GIF.

    Article  CAS  PubMed  Google Scholar 

  33. S. Y. Tee and E. Ye (2021). Recent Advancements in Coinage Metal Nanostructures and Bio-Applications. Mater. Adv. 2 (5), 1507–1529. https://doi.org/10.1039/D0MA00829J.

    Article  CAS  Google Scholar 

  34. M. Hu, J. Chen, Z. Y. Li, L. Au, G. V. Hartland, X. Li, M. Marquez, and Y. Xia (2006). Gold Nanostructures: Engineering Their Plasmonic Properties for Biomedical Applications. Chem. Soc. Rev. 35 (11), 1084–1094. https://doi.org/10.1039/B517615H.

    Article  CAS  PubMed  Google Scholar 

  35. K. D. Gilroy, A. Ruditskiy, H. C. Peng, D. Qin, and Y. Xia (2016). Bimetallic Nanocrystals: Syntheses, Properties, and Applications. Chem. Rev. 116 (18), 10414–10472. https://doi.org/10.1021/ACS.CHEMREV.6B00211/ASSET/IMAGES/MEDIUM/CR-2016-002115_0041.GIF.

    Article  CAS  PubMed  Google Scholar 

  36. M. Sankar, N. Dimitratos, P. J. Miedziak, P. P. Wells, C. J. Kiely, and G. J. Hutchings (2012). Designing Bimetallic Catalysts for a Green and Sustainable Future. Chem. Soc. Rev. 41 (24), 8099–8139. https://doi.org/10.1039/C2CS35296F.

    Article  CAS  PubMed  Google Scholar 

  37. Tylecote, RF. A History of Metallurgy. British Corrosion Journal. 1977, 12(3),137–140. https://doi.org/10.1179/bcj.1977.12.3.137

  38. Y. Zhang, F. Gao, P. Song, J. Wang, T. Song, C. Wang, C. Wang, J. Guo, and Y. Du (2019). The Chain-Typed Nanoflowers Structure Endows PtBi with Highly Electrocatalytic Activity of Ethylene Glycol Oxidation. J. Alloys Compd. 789, 834–840. https://doi.org/10.1016/J.JALLCOM.2019.03.067.

    Article  CAS  Google Scholar 

  39. A. Zaleska-Medynska, M. Marchelek, M. Diak, and E. Grabowska (2016). Noble Metal-Based Bimetallic Nanoparticles: The Effect of the Structure on the Optical, Catalytic and Photocatalytic Properties. Adv. Colloid Interface Sci. 229, 80–107. https://doi.org/10.1016/J.CIS.2015.12.008.

    Article  CAS  PubMed  Google Scholar 

  40. Y. P. Qiu, Q. Shi, W. Z. Wang, S. H. Xia, H. Dai, H. Yin, Z. Q. Yang, and P. Wang (2022). Facile Synthesis of Highly Dispersed and Well-Alloyed Bimetallic Nanoparticles on Oxide Support. Small 18 (43), 2106143. https://doi.org/10.1002/SMLL.202106143.

    Article  CAS  Google Scholar 

  41. D., A. J.; Parimaladevi, R.; A., A. J. A.; Sathe, G. V.; Umadevi, M. Colloidal Design of Au@Pt Nanoflowers with Good Catalytic Activity and SERS Investigations on River Soil. Colloids Surfaces A Physicochem. Eng. Asp. 2018, 554, 218–226. https://doi.org/10.1016/J.COLSURFA.2018.06.055.

  42. Zhao, X.; Dai, L.; Qin, Q.; Pei, F.; Hu, C.; Zheng, N. Self-Supported 3D PdCu Alloy Nanosheets as a Bifunctional Catalyst for Electrochemical Reforming of Ethanol. Small 2017, 13 (12). https://doi.org/10.1002/SMLL.201602970.

  43. Y. Zhou, J. Li, Y. Yang, B. Luo, X. Zhang, E. Fong, W. Chu, and K. Huang (2019). Unique 3D Flower-on-Sheet Nanostructure of NiCo LDHs: Controllable Microwave-Assisted Synthesis and Its Application for Advanced Supercapacitors. J. Alloys Compd. 788, 1029–1036. https://doi.org/10.1016/J.JALLCOM.2019.02.328.

    Article  CAS  Google Scholar 

  44. P. R. Sajanlal and T. Pradeep (2010). Bimetallic Flowers, Beads, and Buds: Synthesis, Characterization, and Raman Imaging of Unique Mesostructures. Langmuir 26 (1), 456–465. https://doi.org/10.1021/LA9020542/SUPPL_FILE/LA9020542_SI_001.PDF.

    Article  CAS  PubMed  Google Scholar 

  45. Wan, J.; Liu, Z.; Yang, X.; Cheng, P.; Yan, C. Cyanogel-Derived Synthesis of Porous PdFe Nanohydrangeas as Electrocatalysts for Oxygen Reduction Reaction. Nanomater. (Basel, Switzerland) 2021, 11 (12). https://doi.org/10.3390/NANO11123382.

  46. D. Zhu, Y. Liu, M. Liu, X. Liu, P. N. Prasad, and M. T. Swihart (2020). Galvanic Replacement Synthesis of Multi-Branched Gold Nanocrystals for Photothermal Cancer Therapy. J. Mater. Chem. B 8 (25), 5491–5499. https://doi.org/10.1039/D0TB00748J.

    Article  CAS  PubMed  Google Scholar 

  47. B. Lim, M. Jiang, P. H. C. Camargo, E. C. Cho, J. Tao, X. Lu, Y. Zhu, and Y. Xia (2009). Pd-Pt Bimetallic Nanodendrites with High Activity for Oxygen Reduction. Science 324 (5932), 1302–1305. https://doi.org/10.1126/SCIENCE.1170377.

    Article  CAS  PubMed  Google Scholar 

  48. L. Zhou, Z. Liu, H. Zhang, S. Cheng, L. J. Fan, and W. Ma (2014). Site-Specific Growth of AgPd Nanodendrites on Highly Purified Au Bipyramids with Remarkable Catalytic Performance. Nanoscale 6 (21), 12971–12980. https://doi.org/10.1039/C4NR04190A.

    Article  CAS  PubMed  Google Scholar 

  49. L. Qian and X. Yang (2006). Polyamidoamine Dendrimers-Assisted Electrodeposition of Gold−Platinum Bimetallic Nanoflowers. J. Phys. Chem. B 110 (33), 16672–16678. https://doi.org/10.1021/JP063302H.

    Article  CAS  PubMed  Google Scholar 

  50. X. Zhu, J. Yan, M. Gu, T. Liu, Y. Dai, Y. Gu, and Y. Li (2019). Activity Origin and Design Principles for Oxygen Reduction on Dual-Metal-Site Catalysts: A Combined Density Functional Theory and Machine Learning Study. J. Phys. Chem. Lett. 10 (24), 7760–7766. https://doi.org/10.1021/ACS.JPCLETT.9B03392.

    Article  CAS  PubMed  Google Scholar 

  51. Kumar, A.; Bui, V. Q.; Lee, J.; Wang, L.; Jadhav, A. R.; Liu, X.; Shao, X.; Liu, Y.; Yu, J.; Hwang, Y.; et al. Moving beyond Bimetallic-Alloy to Single-Atom Dimer Atomic-Interface for All-PH Hydrogen Evolution. Nat. Commun. 2021 121 2021, 12 (1), 1–10. https://doi.org/10.1038/s41467-021-27145-3.

  52. Sharma, G.; Kumar, A.; Sharma, S.; Naushad, M.; Prakash Dwivedi, R.; ALOthman, Z. A.; Mola, G. T. Novel Development of Nanoparticles to Bimetallic Nanoparticles and Their Composites: A Review. J. King Saud Univ. - Sci. 2019, 31 (2), 257–269. https://doi.org/10.1016/J.JKSUS.2017.06.012.

  53. Redina, E. A.; Kirichenko, O. A. Mono- and Bimetallic Nanoparticles in Catalysis. Catal. 2024, Vol. 14, Page 68 2024, 14 (1), 68. https://doi.org/10.3390/CATAL14010068.

  54. M. Censabella, V. Torrisi, S. Boninelli, C. Bongiorno, M. G. Grimaldi, and F. Ruffino (2019). Laser Ablation Synthesis of Mono- and Bimetallic Pt and Pd Nanoparticles and Fabrication of Pt-Pd/Graphene Nanocomposites. Appl. Surf. Sci. 475, 494–503. https://doi.org/10.1016/J.APSUSC.2019.01.029.

    Article  CAS  Google Scholar 

  55. Z. Wang, P. Fei, H. Xiong, C. Qin, W. Zhao, and X. Liu (2017). CoFe2O4 Nanoplates Synthesized by Dealloying Method as High Performance Li-Ion Battery Anodes. Electrochim. Acta 252, 295–305. https://doi.org/10.1016/J.ELECTACTA.2017.08.189.

    Article  CAS  Google Scholar 

  56. Kashyap, R.; Chakraborty, S.; Zeng, S.; Swarnakar, S.; Kaur, S.; Doley, R.; Mondal, B. Enhanced Biosensing Activity of Bimetallic Surface Plasmon Resonance Sensor. Photonics 2019, Vol. 6, Page 108 2019, 6 (4), 108. https://doi.org/10.3390/PHOTONICS6040108.

  57. C. Lu, H. Geng, Y. Zhu, J. Ma, R. Wang, X. Liu, and G. Tu (2023). 3D Flower-Shape Co/Cu Bimetallic Nanocomposites with Excellent Wideband Electromagnetic Microwave Absorption. Appl. Surf. Sci. 615, 156219. https://doi.org/10.1016/J.APSUSC.2022.156219.

    Article  CAS  Google Scholar 

  58. M. Oghbaei and O. Mirzaee (2010). Microwave versus Conventional Sintering: A Review of Fundamentals, Advantages and Applications. J. Alloys Compd. 494 (1–2), 175–189. https://doi.org/10.1016/J.JALLCOM.2010.01.068.

    Article  CAS  Google Scholar 

  59. O. V. Belousov, N. V. Belousova, A. V. Sirotina, L. A. Solovyov, A. M. Zhyzhaev, S. M. Zharkov, and Y. L. Mikhlin (2011). Formation of Bimetallic Au-Pd and Au-Pt Nanoparticles under Hydrothermal Conditions and Microwave Irradiation. Langmuir 27 (18), 11697–11703. https://doi.org/10.1021/LA202686X/ASSET/IMAGES/MEDIUM/LA-2011-02686X_0009.GIF.

    Article  CAS  PubMed  Google Scholar 

  60. D. Fernández-Valdés, C. Torres-Torres, C. L. Martínez-González, M. Trejo-Valdez, L. H. Hernández-Gómez, and R. Torres-Martínez (2016). Gyroscopic Behavior Exhibited by the Optical Kerr Effect in Bimetallic Au–Pt Nanoparticles Suspended in Ethanol. J. Nanoparticle Res. 18 (7), 1–9. https://doi.org/10.1007/S11051-016-3510-2/FIGURES/8.

    Article  Google Scholar 

  61. M. Parashar, V. K. Shukla, and R. Singh (2020). Metal Oxides Nanoparticles via Sol-Gel Method: A Review on Synthesis, Characterization and Applications. J. Mater. Sci. Mater. Electron. 31 (5), 3729–3749. https://doi.org/10.1007/S10854-020-02994-8/FIGURES/16.

    Article  CAS  Google Scholar 

  62. S. Duan and R. Wang (2013). Bimetallic Nanostructures with Magnetic and Noble Metals and Their Physicochemical Applications. Prog. Nat. Sci. Mater. Int. 23 (2), 113–126. https://doi.org/10.1016/J.PNSC.2013.02.001.

    Article  Google Scholar 

  63. P. G. Jamkhande, N. W. Ghule, A. H. Bamer, and M. G. Kalaskar (2019). Metal Nanoparticles Synthesis: An Overview on Methods of Preparation, Advantages and Disadvantages, and Applications. J. Drug Deliv. Sci. Technol. 53, 101174. https://doi.org/10.1016/J.JDDST.2019.101174.

    Article  CAS  Google Scholar 

  64. D. Yu, E. Shamsaei, J. Yao, T. Xu, and H. Wang (2017). A Hierarchically Structured PtCo Nanoflakes-Nanotube as an Electrocatalyst for Methanol Oxidation. Inorg. Chem. Front. 4 (5), 845–849. https://doi.org/10.1039/C7QI00007C.

    Article  CAS  Google Scholar 

  65. Z. Niu, F. Cui, Y. Yu, N. Becknell, Y. Sun, G. Khanarian, D. Kim, L. Dou, A. Dehestani, K. Schierle-Arndt, et al. (2017). Ultrathin Epitaxial Cu@Au Core-Shell Nanowires for Stable Transparent Conductors. J. Am. Chem. Soc. 139 (21), 7348–7354. https://doi.org/10.1021/JACS.7B02884/SUPPL_FILE/JA7B02884_SI_001.PDF.

    Article  CAS  PubMed  Google Scholar 

  66. S. Y. Lin, Y. Q. Yao, L. Zhang, J. J. Feng, and A. J. Wang (2021). Cyanogel and Its Derived-Materials: Properties, Preparation Methods, and Electrochemical Applications. Mater. Today Energy 20, 100701. https://doi.org/10.1016/J.MTENER.2021.100701.

    Article  CAS  Google Scholar 

  67. M. O. Sergeev, A. A. Revina, O. A. Boeva, K. N. Zhavoronkova, and V. I. Zolotarevskii (2020). Synthesis of Pd−Rh Bimetallic Nanoparticles with Different Morphologies in Reverse Micelles and Characterization of Their Catalytic Properties. Prot. Met. Phys. Chem. Surfaces 56 (1), 63–74. https://doi.org/10.1134/S2070205120010207/FIGURES/8.

    Article  CAS  Google Scholar 

  68. L. M. Magno, W. Sigle, P. A. Van Aken, D. G. Angelescu, and C. Stubenrauch (2010). Microemulsions as Reaction Media for the Synthesis of Bimetallic Nanoparticles: Size and Composition of Particles. Chem. Mater. 22 (23), 6263–6271. https://doi.org/10.1021/CM101811G/SUPPL_FILE/CM101811G_SI_001.PDF.

    Article  CAS  Google Scholar 

  69. D. S. Chormey, S. Erarpat, B. T. Zaman, N. Özdoğan, O. Yağmuroğlu, and S. Bakırdere (2023). Nanoflower Synthesis, Characterization and Analytical Applications: A Review. Environ. Chem. Lett. 21 (3), 1863–1880. https://doi.org/10.1007/S10311-023-01572-8.

    Article  CAS  Google Scholar 

  70. T. Fu, X. Tong, Y. Zhou, D. Wu, D. Xiong, S. Xu, L. Wang, and P. K. Chu (2022). One-Step Hydrothermal Synthesis of CoNi Bimetallic Phosphide Nanoflowers for High-Performance Quasi-Solid-State Zinc-Ion Batteries. J. Alloys Compd. 918, 165734. https://doi.org/10.1016/J.JALLCOM.2022.165734.

    Article  CAS  Google Scholar 

  71. S. W. Bokhari, A. V. Ellis, M. Uceda, S. Wei, M. Pope, S. Zhu, W. Gao, and P. C. Sherrell (2022). Nitrogen-Doped Reduced Graphene Oxide/MoS2 ‘Nanoflower’ Composites for High-Performance Supercapacitors. J. Energy Storage 56, 105935. https://doi.org/10.1016/J.EST.2022.105935.

    Article  Google Scholar 

  72. J. Kalidass, M. Reji, and T. Sivasankar (2024). Synthesis of Fe3O4 Nanoparticles with Enhanced Properties via Sonoelectrochemical Approach: A Comparative Study with Electrochemical and Hydrothermal Method. Chem. Eng. Process. - Process Intensif. 197, 109690. https://doi.org/10.1016/J.CEP.2024.109690.

    Article  CAS  Google Scholar 

  73. J. Zhou, Y. Zhao, J. Bao, D. Huo, H. Fa, X. Shen, and C. Hou (2017). One-Step Electrodeposition of Au-Pt Bimetallic Nanoparticles on MoS2 Nanoflowers for Hydrogen Peroxide Enzyme-Free Electrochemical Sensor. Electrochim. Acta 250, 152–158. https://doi.org/10.1016/J.ELECTACTA.2017.08.044.

    Article  CAS  Google Scholar 

  74. Bharti, A.; Mittal, S.; Rana, S.; Dahiya, D.; Agnihotri, N.; Prabhakar, N. Electrochemical Biosensor for MiRNA-21 Based on Gold-Platinum Bimetallic Nanoparticles Coated 3-Aminopropyltriethoxy Silane. Anal. Biochem. 2020, 609. https://doi.org/10.1016/J.AB.2020.113908.

  75. Zhu, Q.; Liang, B.; Liang, Y.; Ji, L.; Cai, Y.; Wu, K.; Tu, T.; Ren, H.; Huang, B.; Wei, J.; et al. 3D Bimetallic Au/Pt Nanoflowers Decorated Needle-Type Microelectrode for Direct in Situ Monitoring of ATP Secreted from Living Cells. Biosens. Bioelectron. 2020, 153. https://doi.org/10.1016/J.BIOS.2020.112019.

  76. Li, A.; Duan, W.; Liu, J.; Zhuo, K.; Chen, Y.; Wang, J. Electrochemical Synthesis of AuPt Nanoflowers in Deep Eutectic Solvent at Low Temperature and Their Application in Organic Electro-Oxidation. Sci. Reports 2018 81 2018, 8 (1), 1–9. https://doi.org/10.1038/s41598-018-31402-9.

  77. Y. Chen, X. Liu, S. Zhang, L. Yang, M. Liu, Y. Zhang, and S. Yao (2017). Ultrasensitive and Simultaneous Detection of Hydroquinone, Catechol and Resorcinol Based on the Electrochemical Co-Reduction Prepared Au-Pd Nanoflower/Reduced Graphene Oxide Nanocomposite. Electrochim. Acta 231, 677–685. https://doi.org/10.1016/J.ELECTACTA.2017.02.060.

    Article  CAS  Google Scholar 

  78. Mao, J.; Chen, Y.; Pei, J.; Wang, D.; Li, Y. Pt–M (M = Cu, Fe, Zn, Etc.) Bimetallic Nanomaterials with Abundant Surface Defects and Robust Catalytic Properties. Chem. Commun. 2016, 52 (35), 5985–5988. https://doi.org/10.1039/C6CC02264B.

  79. J. Kim, H. Kim, G. H. Han, S. Hong, J. Park, J. Bang, S. Y. Kim, and S. H. Ahn (2022). Electrodeposition: An Efficient Method to Fabricate Self-Supported Electrodes for Electrochemical Energy Conversion Systems. Exploration 2 (3), 20210077. https://doi.org/10.1002/EXP.20210077.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Sumbal; Nadeem, A.; Naz, S.; Ali, J. S.; Mannan, A.; Zia, M. Synthesis, Characterization and Biological Activities of Monometallic and Bimetallic Nanoparticles Using Mirabilis Jalapa Leaf Extract. Biotechnol. Reports 2019, 22, e00338. https://doi.org/10.1016/J.BTRE.2019.E00338.

  81. C. Vanlalveni, S. Lallianrawna, A. Biswas, M. Selvaraj, B. Changmai, and S. L. Rokhum (2021). Green Synthesis of Silver Nanoparticles Using Plant Extracts and Their Antimicrobial Activities: A Review of Recent Literature. RSC Adv. 11 (5), 2804–2837. https://doi.org/10.1039/D0RA09941D.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Y. Xia, Y. Xiong, B. Lim, and S. E. Skrabalak (2009). Shape-Controlled Synthesis of Metal Nanocrystals: Simple Chemistry Meets Complex Physics? Angew. Chemie Int. Ed. 48 (1), 60–103. https://doi.org/10.1002/ANIE.200802248.

    Article  CAS  Google Scholar 

  83. Wu, F.; Lin, Q.; Wang, L.; Zou, Y.; Chen, M.; Xia, Y.; Lan, J.; Chen, J. A DNA Electrochemical Biosensor Based on Triplex DNA-Templated Ag/Pt Nanoclusters for the Detection of Single-Nucleotide Variant. Talanta 2020, 207. https://doi.org/10.1016/J.TALANTA.2019.120257.

  84. Botha, T. L.; Elemike, E. E.; Horn, S.; Onwudiwe, D. C.; Giesy, J. P.; Wepener, V. Cytotoxicity of Ag, Au and Ag-Au Bimetallic Nanoparticles Prepared Using Golden Rod (Solidago Canadensis) Plant Extract. Sci. Reports 2019 91 2019, 9 (1), 1–8. https://doi.org/10.1038/s41598-019-40816-y.

  85. D. Kerkez, M. Bečelić-Tomin, V. Gvoić, and B. Dalmacija (2021). Metal Nanoparticles in Dye Wastewater Treatment - Smart Solution for Clear Water. Recent Pat. Nanotechnol. 15 (3), 270–294. https://doi.org/10.2174/1872210515666210217091434.

    Article  CAS  PubMed  Google Scholar 

  86. M. X. Zhang, R. Cui, J. Y. Zhao, Z. L. Zhang, and D. W. Pang (2011). Synthesis of Sub-5 Nm Au–Ag Alloy Nanoparticles Using Bio-Reducing Agent in Aqueous Solution. J. Mater. Chem. 21 (43), 17080–17082. https://doi.org/10.1039/C1JM13120F.

    Article  CAS  Google Scholar 

  87. M. Larrañaga-Tapia, B. Betancourt-Tovar, M. Videa, M. Antunes-Ricardo, and J. L. Cholula-Díaz (2023). Green Synthesis Trends and Potential Applications of Bimetallic Nanoparticles towards the Sustainable Development Goals 2030. Nanoscale Adv. 6 (1), 51–71. https://doi.org/10.1039/D3NA00761H.

    Article  PubMed  PubMed Central  Google Scholar 

  88. A. A. Herzing, M. Watanabe, J. K. Edwards, M. Conte, Z. R. Tang, G. J. Hutchings, and C. J. Kiely (2008). Energy Dispersive X-Ray Spectroscopy of Bimetallic Nanoparticles in an Aberration Corrected Scanning Transmission Electron Microscope. Faraday Discuss. 138, 337–351. https://doi.org/10.1039/B706293C.

    Article  CAS  PubMed  Google Scholar 

  89. Kang, Y.; Xue, Q.; Peng, R.; Jin, P.; Zeng, J.; Jiang, J.; Chen, Y. Bimetallic AuRh Nanodendrites Consisting of Au Icosahedron Cores and Atomically Ultrathin Rh Nanoplate Shells: Synthesis and Light-Enhanced Catalytic Activity. NPG Asia Mater. 2017 97 2017, 9 (7), e407–e407. https://doi.org/10.1038/am.2017.114.

  90. S. Nuti, A. Fernández-Lodeiro, L. E. Chinchilla, A. B. Hungría, J. L. Capelo-Martinez, C. Lodeiro, and J. Fernández-Lodeiro (2023). Synthesis and Structural Characterization of Branched Bimetallic AuPd Nanoparticles with a Highly Tunable Optical Response. J. Phys. Chem. Lett. 14 (27), 6315–6320. https://doi.org/10.1021/ACS.JPCLETT.3C01431/ASSET/IMAGES/LARGE/JZ3C01431_0003.JPEG.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. D. Tian, Z. Wu, X. Liu, Z. Tu, R. Li, D. Fan, and Y. Lan (2023). Synthesis of L-Aspartic Acid-Based Bimetallic Hybrid Nanoflowers to Immobilize Snailase for the Production of Rare Ginsenoside Compound K. J. Mater. Chem. B 11 (11), 2397–2408. https://doi.org/10.1039/D3TB00013C.

    Article  CAS  PubMed  Google Scholar 

  92. Y. Shu, W. Zhang, X. Yin, L. Zhang, Y. Yang, D. Ma, and Q. Gao (2020). Efficient Electrochemical Biosensing of Hydrogen Peroxide on Bimetallic Mo1-XWxS2 Nanoflowers. J. Colloid Interface Sci. 566, 248–256. https://doi.org/10.1016/J.JCIS.2020.01.083.

    Article  CAS  PubMed  Google Scholar 

  93. T. Xia, J. Liu, S. Wang, C. Wang, Y. Sun, L. Gu, and R. Wang (2016). Enhanced Catalytic Activities of NiPt Truncated Octahedral Nanoparticles toward Ethylene Glycol Oxidation and Oxygen Reduction in Alkaline Electrolyte. ACS Appl. Mater. Interfaces 8 (17), 10841–10849. https://doi.org/10.1021/ACSAMI.6B01115/SUPPL_FILE/AM6B01115_SI_001.PDF.

    Article  CAS  PubMed  Google Scholar 

  94. Jiang, L. Y.; Lin, X. X.; Wang, A. J.; Yuan, J.; Feng, J. J.; Li, X. S. Facile Solvothermal Synthesis of Monodisperse Pt2.6Co1 Nanoflowers with Enhanced Electrocatalytic Activity towards Oxygen Reduction and Hydrogen Evolution Reactions. Electrochim. Acta 2017, 225, 525–532. https://doi.org/10.1016/J.ELECTACTA.2016.12.123.

  95. G. Fu, K. Wu, J. Lin, Y. Tang, Y. Chen, Y. Zhou, and T. Lu (2013). One-Pot Water-Based Synthesis of Pt-Pd Alloy Nanoflowers and Their Superior Electrocatalytic Activity for the Oxygen Reduction Reaction and Remarkable Methanol-Tolerant Ability in Acid Media. J. Phys. Chem. C 117 (19), 9826–9834. https://doi.org/10.1021/JP400502Y/SUPPL_FILE/JP400502Y_SI_001.PDF.

    Article  CAS  Google Scholar 

  96. J. J. Lv, J. X. Feng, S. S. Li, Y. Y. Wang, A. J. Wang, Q. L. Zhang, J. R. Chen, and J. J. Feng (2014). Ionic Liquid Crystal-Assisted Synthesis of PtAg Nanoflowers on Reduced Graphene Oxide and Their Enhanced Electrocatalytic Activity toward Oxygen Reduction Reaction. Electrochim. Acta 133, 407–413. https://doi.org/10.1016/J.ELECTACTA.2014.04.077.

    Article  CAS  Google Scholar 

  97. J. N. Zheng, L. L. He, F. Y. Chen, A. J. Wang, M. W. Xue, and J. J. Feng (2014). Simple One-Pot Synthesis of Platinum-Palladium Nanoflowers with Enhanced Catalytic Activity and Methanol-Tolerance for Oxygen Reduction in Acid Media. Electrochim. Acta 137, 431–438. https://doi.org/10.1016/J.ELECTACTA.2014.06.052.

    Article  CAS  Google Scholar 

  98. A. Shan, S. Huang, H. Zhao, W. Jiang, X. Teng, Y. Huang, C. Chen, R. Wang, and W. M. Lau (2020). Atomic-Scaled Surface Engineering Ni-Pt Nanoalloys towards Enhanced Catalytic Efficiency for Methanol Oxidation Reaction. Nano Res. 13 (11), 3088–3097. https://doi.org/10.1007/S12274-020-2978-3/METRICS.

    Article  CAS  Google Scholar 

  99. W. Ye, H. Kou, Q. Liu, J. Yan, F. Zhou, and C. Wang (2012). Electrochemical Deposition of Au–Pt Alloy Particles with Cauliflower-like Microstructures for Electrocatalytic Methanol Oxidation. Int. J. Hydrogen Energy 37 (5), 4088–4097. https://doi.org/10.1016/J.IJHYDENE.2011.11.132.

    Article  CAS  Google Scholar 

  100. Y. Chen, J. Yang, Y. Yang, Z. Peng, J. Li, T. Mei, J. Wang, M. Hao, Y. Chen, W. Xiong, et al. (2015). A Facile Strategy to Synthesize Three-Dimensional Pd@Pt Core-Shell Nanoflowers Supported on Graphene Nanosheets as Enhanced Nanoelectrocatalysts for Methanol Oxidation. Chem. Commun. 51 (52), 10490–10493. https://doi.org/10.1039/C5CC01803J.

    Article  CAS  Google Scholar 

  101. L. Xu, Q. Cui, H. Zhang, A. Jiao, Y. Tian, S. Li, H. Li, M. Chen, and F. Chen (2020). Ultra-Clean PtPd Nanoflowers Loaded on GO Supports with Enhanced Low-Temperature Electrocatalytic Activity for Fuel Cells in Harsh Environment. Appl. Surf. Sci. 511, 145603. https://doi.org/10.1016/J.APSUSC.2020.145603.

    Article  CAS  Google Scholar 

  102. C. Liu, X. Ran, Q. Qu, T. Zhang, G. Du, and L. Yang (2019). Synthesis and Facile Structure-Adjusting of Pd–Pt Nanocrystal Electrocatalysts with Improved Activity for Ethanol Oxidation Reaction. New J. Chem. 43 (46), 17954–17962. https://doi.org/10.1039/C9NJ04094C.

    Article  CAS  Google Scholar 

  103. K. J. Ju, L. Liu, J. J. Feng, Q. L. Zhang, J. Wei, and A. J. Wang (2016). Bio-Directed One-Pot Synthesis of Pt-Pd Alloyed Nanoflowers Supported on Reduced Graphene Oxide with Enhanced Catalytic Activity for Ethylene Glycol Oxidation. Electrochim. Acta 188, 696–703. https://doi.org/10.1016/J.ELECTACTA.2015.11.126.

    Article  CAS  Google Scholar 

  104. C. Ma, Y. Du, J. Feng, X. Cao, J. Yang, and D. Li (2014). Fabrication of Supported PdAu Nanoflower Catalyst for Partial Hydrogenation of Acetylene. J. Catal. 317, 263–271. https://doi.org/10.1016/J.JCAT.2014.06.018.

    Article  CAS  Google Scholar 

  105. X. X. Lin, A. J. Wang, K. M. Fang, J. Yuan, and J. J. Feng (2017). One-Pot Seedless Aqueous Synthesis of Reduced Graphene Oxide (RGO)-Supported Core-Shell Pt@Pd Nanoflowers as Advanced Catalysts for Oxygen Reduction and Hydrogen Evolution. ACS Sustain. Chem. Eng. 5 (10), 8675–8683. https://doi.org/10.1021/ACSSUSCHEMENG.7B01400/SUPPL_FILE/SC7B01400_SI_001.PDF.

    Article  CAS  Google Scholar 

  106. X. Chen, H. Sun, D. H. Kuo, A. B. Abdeta, O. A. Zelekew, Y. Guo, J. Zhang, Z. Yuan, and J. Lin (2021). Spherical Nanoflower-like Bimetallic (Mo, Ni)(S, O)3–x Sulfo-Oxide Catalysts for Efficient Hydrogen Evolution under Visible Light. Appl. Catal. B Environ. 287, 119992. https://doi.org/10.1016/J.APCATB.2021.119992.

    Article  CAS  Google Scholar 

  107. N. Choudhary, V. Kumar, and S. M. Mobin (2022). Bimetallic CoNi Nanoflowers for Catalytic Transfer Hydrogenation of Terminal Alkynes. ChemistrySelect 7 (37), e202202501. https://doi.org/10.1002/SLCT.202202501.

    Article  CAS  Google Scholar 

  108. M. Gong, F. Li, Z. Yao, S. Zhang, J. Dong, Y. Chen, and Y. Tang (2015). Highly Active and Durable Platinum-Lead Bimetallic Alloy Nanoflowers for Formic Acid Electrooxidation. Nanoscale 7 (11), 4894–4899. https://doi.org/10.1039/C4NR07375D.

    Article  CAS  PubMed  Google Scholar 

  109. Q. Zhou, L. Qi, H. Yang, and C. Xu (2018). Hierarchical Nanoporous Platinum-Copper Alloy Nanoflowers as Highly Active Catalysts for the Hydrolytic Dehydrogenation of Ammonia Borane. J. Colloid Interface Sci. 513, 258–265. https://doi.org/10.1016/J.JCIS.2017.11.040.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Authors are grateful to Director General, Central Council for Research in Ayurvedic Sciences, New Delhi – 110058, India for providing the facilities.

Funding

Not applicable

Author information

Authors and Affiliations

Authors

Contributions

SKM: Conceptualization; writing – original draft; review and editing of manuscript

SAB: writing – original draft

V K, P D, Y G, H R, B Y, CVN: review and editing (equal)

All authors reviewed the results and approved the final version of the manuscript.

Corresponding author

Correspondence to Sujeet K. Mishra.

Ethics declarations

Competing interests

The authors declare no competing interests.

Declarations

Ethical Approval

(Applicable for both human and/ or animal studies. Ethical committees, Internal Review Boards and guidelines followed must be named. When applicable, additional headings with statements on consent to participate and consent to publish are also required)

Not Applicable

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhat, S.A., Mishra, S.K., Kumar, V. et al. A Floral Revolution: Unveiling the Potential and Catalytic Brilliance of Bimetallic Nanoflowers. J Clust Sci (2024). https://doi.org/10.1007/s10876-024-02629-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10876-024-02629-6

Keywords

Navigation