Skip to main content
Log in

Enhanced Crystallinity Behavior of Egg White Mediated h-MoO3 Using Acid Precipitation Method for Improved Anti-Bacterial Properties against Multi Drug Resistant Bacteria

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

Hexagonal molybdenum trioxide (h-MoO3) was synthesized using egg white with MoO3 precursor, which was further treated with nitric acid (HNO3) by solution-based chemical precipitation technique for comparison without treatment. The XRD analysis confirms the formation of metastable phase with hexagonal crystal system for h-MoO3 with and without HNO3 treatment. Subsequently, the result indicate that the HNO3 treated h-MoO3 shows enhanced crystalline behavior compared to untreated h-MoO3. Raman and FTIR analysis confirmed the formation of h-MoO3 where the variation in intensity of the peaks were observed when comparing h-MoO3 with and without HNO3 treatment as well as due to the changes in the crystalline structure of the samples. The band gaps obtained from Tauc plot for the synthesized h-MoO3 with and without HNO3 treatment were 3.17 eV and 3.26 eV, respectively. Observations by HRSEM and HRTEM allowed confirming the formation of nanorod and nanoplate like structures for h-MoO3 treated with and without HNO3, respectively. In addition, the increased crystallinity of the HNO3 treated h-MoO3 was displayed higher anti-bacterial activity than untreated h-MoO3 with zones of inhibition values of 14 ± 1 and 12 ± 1 mm against multi drug resistant (MDR) E. coli and K. pneumoniae, respectively. Subsequently, the quantitative analysis of HNO3 treated h-MoO3 demonstrated 94% and 96% inhibition against E. coli and K. pneumoniae, respectively, at 250 µg/mL concentration. Oxidative stress mediated membrane damages and surface morphology alterations were observed after exposure of HNO3-treated h-MoO3 (improved crystallinity) against E. coli and K. pneumoniae as suggested by confocal laser scanning electron microscopy and scanning electron microscopy. Furthermore, very minimal cytotoxicity to human alveolar epithelial cell line (A549) for HNO3 treated h-MoO3 was observed, suggesting that this material is benign. The present study indicates that the enhanced crystallinity of HNO3 treated h-MoO3 synthesized in the presence of egg white can be considered as a promising alternative drug target material to fight against MDR bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

Data sets generated during the current study are available from the corresponding author on reasonable request.

References

  1. Alwhibi, M.S., Soliman, D.A., Awad, M.A., Alangery, A.B., Al Dehaish, H. and Alwasel, Y.A., Green synthesis of silver nanoparticles: Characterization and its potential biomedical applications. Green Processing and Synthesis, 10, 2021,412–420.

    Article  CAS  Google Scholar 

  2. Shah, R., Shah, S.A., Shah, S., Faisal, S. and Ullah, F., Green synthesis and antibacterial activity of gold nanoparticles of Digeramuricata. Indian Journal of Pharmaceutical Sciences, 82, 2020,374–378.

    Article  CAS  Google Scholar 

  3. Abdullahi, H.T., Faisal, S., Rizwan, M., Saira, Z.N., Iqbal, M., Iqbal, A. and Ali, Z., Green Synthesis and Characterization of Copper and Nickel Hybrid Nanomaterials: Investigation of Their Biological and Photocatalytic Potential for the Removal of Organic Crystal Violet Dye. J. Saudi Chem. Soc, 26, 2022,101486–101491.

    Article  Google Scholar 

  4. Khan, M.A., Ali, F., Faisal, S., Rizwan, M., Hussain, Z., Zaman, N., Afsheen, Z., Uddin, M.N. and Bibi, N., Exploring the therapeutic potential of Hibiscus rosasinensis synthesized cobalt oxide (Co3O4-NPs) and magnesium oxide nanoparticles (MgO-NPs). Saudi Journal of Biological Sciences, 28,2021,5157–5167.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Khan, M.I., Shah, S., Faisal, S., Gul, S., Khan, S., Abdullah, Shah, S.A. and Shah, W.A., Monothecabuxifolia driven synthesis of zinc oxide nano material its characterization and biomedical applications. Micromachines, 13,2022,668–678.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Moritz, M. and Geszke-Moritz, M., The newest achievements in synthesis, immobilization and practical applications of antibacterial nanoparticles. Chemical Engineering Journal, 228, 2013, 596–613.

    Article  CAS  Google Scholar 

  7. Krishnamoorthy, K., Moon, J.Y., Hyun, H.B., Cho, S.K. and Kim, S.J., Mechanistic investigation on the toxicity of MgO nanoparticles toward cancer cells. Journal of materials chemistry, 22, 2012, 24610–24617.

    Article  CAS  Google Scholar 

  8. Athreya, A.G., Shareef, M.I. and Gopinath, S.M., Antibacterial activity of silver nanoparticles isolated from cow’s milk, hen’s egg white and lysozyme: a comparative study. Arabian Journal for Science and Engineering, 44, 2019, 6231–6240.

    Article  CAS  Google Scholar 

  9. Das, D., Nath, B.C., Phukon, P. and Dolui, S.K., Synthesis and evaluation of antioxidant and antibacterial behavior of CuO nanoparticles. Colloids and Surfaces B: Biointerfaces, 101, 2013, 430–433.

    Article  CAS  PubMed  Google Scholar 

  10. Prakash, N.G., Dhananjaya, M., Narayana, A.L., Shaik, D.P., Rosaiah, P. and Hussain, O.M., High performance one dimensional α-MoO3nanorods for supercapacitor applications. Ceramics International, 44, 2018, 9967–9975.

    Article  CAS  Google Scholar 

  11. Lou, X.W. and Zeng, H.C., Hydrothermal synthesis of α-MoO3 nanorods via acidification of ammonium heptamolybdatetetrahydrate. Chemistry of materials, 14, 2002, 4781–4789.

    Article  CAS  Google Scholar 

  12. Lunk, H.J., Hartl, H., Hartl, M.A., Fait, M.J., Shenderovich, I.G., Feist, M., Frisk, T.A., Daemen, L.L., Mauder, D., Eckelt, R. and Gurinov, A.A., “Hexagonal Molybdenum Trioxide” Known for 100 Years and Still a Fount of New Discoveries. Inorganic chemistry, 49, 2010, 9400–9408.

  13. Zheng, L., Xu, Y., Jin, D. and Xie, Y., Novel metastable hexagonal MoO3 nanobelts: synthesis, photochromic, and electrochromic properties. Chemistry of Materials, 21, 2009, 5681–5690.

    Article  CAS  Google Scholar 

  14. Paul, M., Dhanasekar, M. and Bhat, S.V., Silver doped h-MoO3nanorods for sonophotocatalytic degradation of organic pollutants in ambient sunlight. Applied Surface Science, 418, 2017, 113–118.

    Article  CAS  Google Scholar 

  15. Caiger, N.A., Crouch-Baker, S., Dickens, P.G. and James, G.S., Preparation and structure of hexagonal molybdenum trioxide. Journal of Solid State Chemistry, 67, 1987, 369–373.

    Article  CAS  Google Scholar 

  16. SudalaiMuthu, K. and Perumal, P., Synthesis and characterization of NiO Nanoparticles using egg white method. Journal of Materials Science: Materials in Electronics, 28, 2017, 9612–9617.

    CAS  Google Scholar 

  17. Thangaraj, P., Rajan, J., Durai, S., Kumar, S., RatnaPhani, A. and Neri, G., The role of albumen (egg white) in controlled particle size and electrical conductivity behavior of zinc oxide nanoparticles. Vacuum, 86, 2011, 140–143.

    Article  CAS  Google Scholar 

  18. Maensiri, S., Masingboon, C., Laokul, P., Jareonboon, W., Promarak, V., Anderson, P.L. and Seraphin, S., 2007. Egg white synthesis and photoluminescence of platelike clusters of CeO2 nanoparticles. Crystal growth & design, 7, 2007, 950–955.

  19. Chithambararaj, A., Winston, B., Sanjini, N.S., Velmathi, S. and Bose, A.C., Band gap tuning of h-MoO3 nanocrystals for efficient visible light photocatalytic activity against methylene blue dye. Journal of Nanoscience and Nanotechnology, 15, 2015, 4913–4919.

    Article  CAS  PubMed  Google Scholar 

  20. Shuai, C., Wang, C., Qi, F., Peng, S., Yang, W., He, C., Wang, G. and Qian, G., Enhanced crystallinity and antibacterial of PHBV scaffolds incorporated with zinc oxide. Journal of Nanomaterials, 6, 2020,1–12.

    Article  Google Scholar 

  21. Ohira, T. and Yamamoto, O., Correlation between antibacterial activity and crystallite size on ceramics. Chemical engineering science, 68, 2012, 355–361.

    Article  CAS  Google Scholar 

  22. Parker, H. M., & Mattick, K. The determinants of antimicrobial prescribing among hospital doctors in England: a framework to inform tailored stewardship interventions. British Journal of Clinical Pharmacology, 82, 2016, 431–440.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Michie, S., van Stralen, M.M. & West, R. The behavior change wheel: A new method for characterising and designing behavior change interventions. Implementation Sci 6, 2011,63–67.

    Article  Google Scholar 

  24. Cordt, Z., Kai, G., Peter, W, Josef Peter, G., Antimicrobial activity of transition metal acid MoO3 prevents microbial growth on material surfaces, Materials Science and Engineering: C, 32, 2012, 47–54.

    Article  Google Scholar 

  25. Sapan Kumar, S., Seema, D., Razib, K., M.S. Manir., Supria, D., Abdul Al, M., Sultana, R., Hakim., M.A., Characterization and Antibacterial Activity Study of Hydrothermally Synthesized h-MoO3Nanorods and α-MoO3Nanoplates, BioNanoScience, 9,2019, 873–882.

  26. Maruthupandy, M., Rajivgandhi, G., Muneeswaran, T., Songa, J.M., Manoharan, N., Biologically synthesized zinc oxide nanoparticles as nanoantibiotics against ESBLs producing gram negative bacteria, Microbial Pathogenesis, 121,2018, 224–231.

    Article  CAS  PubMed  Google Scholar 

  27. Prashant, K.S., Raghubanshi, A.S., Shah, K., Examining dye degradation and antibacterial properties of organically induced α-MoO3 nanoparticles, their uptake and phytotoxicity in rice seedlings, Environmental Nanotechnology, Monitoring & Management 14,2020, 100315–100320.

    Article  Google Scholar 

  28. Yihan, W., Huiling, G., Jianzhang, L., Hao, L., Chitosan nanoparticles efficiently enhance the dispersibility, stability and selective antibacterial activity of insoluble isoflavonoids, International Journal of Biological Macromolecules, 232, 2023, 123420.

    Article  Google Scholar 

  29. Chithambararaj, A., Winston, B., Sanjini, N.S., Velmathi, S. and Bose, A.C., Band gap tuning of h-MoO3nanocrystals for efficient visible light photocatalytic activity against methylene blue dye. Journal of Nanoscience and Nanotechnology, 15, 2015, 4913–4919.

    Article  CAS  PubMed  Google Scholar 

  30. Yogamalar, R., Srinivasan, R., Vinu, A., Ariga, K. and Bose, A.C., X-ray peak broadening analysis in ZnO nanoparticles. Solid State Communications, 149,2009, 1919–1923.

    Article  CAS  Google Scholar 

  31. Atuchin, V.V., Gavrilova, T.A., Kostrovsky, V.G., Pokrovsky, L.D. and Troitskaia, I.B., Morphology and structure of hexagonal MoO3nanorods. Inorganic Materials, 44, 2008, 622–627.

    Article  CAS  Google Scholar 

  32. Seguin, L., Figlarz, M., Cavagnat, R. and Lassègues, J.C., Infrared and Raman spectra of MoO3 molybdenum trioxides and MoO3·xH2O molybdenum trioxide hydrates. SpectrochimicaActa Part A: Molecular and Biomolecular Spectroscopy, 51, 1995, 1323–1344.

    Article  Google Scholar 

  33. Xia, T., Li, Q., Liu, X., Meng, J. and Cao, X., Morphology-controllable synthesis and characterization of single-crystal molybdenum trioxide. The Journal of Physical Chemistry B, 110, 2006, 2006–2012.

    Article  CAS  PubMed  Google Scholar 

  34. Muraoka, Y., Grenier, J.C., Petit, S. and Pouchard, M., Preparation of hexagonal MoO3 by “ChimieDouce” reaction with NO2. Solid state sciences, 1, 1999, 133–148.

    Article  CAS  Google Scholar 

  35. Sun, Y., Liu, H., Wang, X., Kong, X. and Zhang, H., Optical spectroscopy and visible upconversion studies of YVO4: Er3+nanocrystals synthesized by a hydrothermal process. Chemistry of Materials, 18, 2006, 2726–2732.

    Article  CAS  Google Scholar 

  36. Irmawati, R. and Shafizah, M., The production of high purity hexagonal MoO3 through the acid washing of as-prepared solids. Int. J. Basic Appl. Sci, 9, 2009, 241–244.

    Google Scholar 

  37. Gowtham, B., Ponnuswamy, V., Pradeesh, G., Chandrasekaran, J. and Aradhana, D., MoO3 overview: hexagonal plate-like MoO3 nanoparticles prepared by precipitation method. Journal of Materials Science: Materials in Electronics, 29, 2018,6835–6843.

    CAS  Google Scholar 

  38. Pradeesh, G., Ponnuswamy, V., Chandrasekaran, J., Gowtham, B. and Ashokan, S., 2017. Structural, morphological, optical and electrical properties of PANI: Mo13O33 composite prepared by in-situ chemical oxidative method—application to p–n junction diode. Journal of Materials Science: Materials in Electronics, 28, 2017, 17308–17320.

  39. Gong, J., Zeng, W., & Zhang, H., Hydrothermal synthesis of controlled morphologies of MoO3nanobelts and hierarchical structures. Materials Letters, 154, 2015,170–172.

    Article  CAS  Google Scholar 

  40. Ali, F., Pedram, Afshar, N., Antimicrobial, antioxidant and cytotoxic effect of Molybdenum trioxide nanoparticles and application of this for degradation of ketamine under different light illumination, Journal of Photochemistry and Photobiology B: Biology, 159, 2016, 211–217.

    Article  Google Scholar 

  41. Meta, S., Urska, G.C., Aljaz, D., Maja, R., Sonja, S.M., Pseudomonas fragi biofilm on stainless steel (at low temperatures) affects the survival of Campylobacter jejuni and Listeria monocytogenes and their control by a polymer molybdenum oxide nanocomposite coating, International Journal of Food Microbiology, 394, 2023, 110159.

    Article  Google Scholar 

  42. Muhammad, A.A., Yafeng, Y., Ali, F., Synthesis of NiS–MoO3 nanocomposites and decorated on graphene oxides for heterogeneous photocatalysis, antibacterial and antioxidant activities, Ceramics International, 46, 2020, 8379–8384.

    Article  Google Scholar 

  43. Yanjie, Z., Jiang, X., Zhengyang, L., Tao, F., Shuyun, J.,In vitro antibacterial properties of MoO3/SiO2/Ag2O nanocomposite coating prepared by double cathode glow discharge technique, Surface and Coatings Technology, 397, 2020, 125992.

  44. Arfaoui, A., Mhamdi, A., Besrour, N., Touihri, S., Ouzari, H.I., Alrowaili, Z.A., Amlouk, M., Investigations into the physical properties of SnO2/MoO3 and SnO2/WO3 bi-layered structures along with photocatalytic and antibacterial applications, Thin Solid Films, 648, 2018, 12–20.

    Article  CAS  Google Scholar 

  45. Hong, Y., Zengwei, Z., Yumei, L., Weifeng, L., In-situ intercalation of MoO3-x in g-C3N4 for the enhancement of photocatalytic and antibacterial activities, Journal of Photochemistry and Photobiology A: Chemistry, 390, 2020, 112297.

    Article  Google Scholar 

  46. Birhanu, B.T., Park, NH., Lee, SJ. et al. Inhibition of Salmonella Typhimurium adhesion, invasion, and intracellular survival via treatment with methyl gallate alone and in combination with marbofloxacin. Vet. Res. 49,2018,101–108.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Zwicker, P., Schmidt, T., Hornschuh, M., Lode, H., Kramer, A., Muller, G., In vitro response of THP-1 derived macrophages to antimicrobially effective PHMB-coated Ti6Al4V alloy implant material with and without contamination with S. epidermidis and P. aeruginosa, Biomater. Res. 26, 2022,

  48. Vineeth Kumar, C.M., Karthick, V., Ganesh Kumar, V., Inbakandan, D., Rene, E.R., Uma Suganya, K.S., Embrandiri, A., Stalin Dhas, T., Ravi, M., Sowmiya, P., The impact of engineered nanomaterials on the environment: Release mechanism, toxicity, transformation, and remediation, Environ. Res. 212, 2022, 113202.

    Article  CAS  PubMed  Google Scholar 

  49. Bayabil, H.K., Teshome, F.T., Li, Y.C., Emerging contaminants in soil and water, Front. Environ. Sci. 2022.

  50. Maddela, N.R., Ramakrishnan, B., Kakarla, D., Venkateswarlu, K., Megharaj, M., Major contaminants of emerging concern in soils: a perspective on potential health risks, RSC Adv. 12, 2022, 12396–12415.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Pavan, C., Santalucia, R., Escolano-Casado, G., Ugliengo, P., Mino, L. and Turci, F., Physico-Chemical Approaches to Investigate Surface Hydroxyls as Determinants of Molecular Initiating Events in Oxide Particle Toxicity. International Journal of Molecular Sciences, 24,2023,11482.

  52. A. Levina, A.I. McLeod, J. Seuring, P.A. Lay, Reactivity of potential anti-diabetic molybdenum(VI) complexes in biological media: A XANES spectroscopic studyJ. Inorg. Biochem. 101, 2007, 1586–1587.

    Article  CAS  Google Scholar 

  53. C. Zollfrank, K. Gutbrod, P. Wechsler, J.P. Guggenbichler, Antimicrobial activity of transition metal acid MoO(3) prevents microbial growth on material surfaces Mater. Sci. Eng. C, 32, 2012, 47–49.

    Article  CAS  Google Scholar 

  54. K. Krishnamoorthy, M. Veerapandian, L.-H. Zhang, K. Yun, S.-J. Kim, J. Phys. Chem. C116, 2012, 1728–1732.

    Google Scholar 

  55. K.R. Raghupathi, R.T. Koodali, A.C. Manna, Size-dependent bacterial growth inhibition and mechanism of antibacterial activity of zinc oxide nanoparticles, Langmuir, 27,2011, 4020–4022.

    Article  CAS  PubMed  Google Scholar 

  56. M. Horie, K. Fujita, H. Kato, S. Endoh, K. Nishio, L.K. Komaba, A. Nakamura, A. Miyauchi, S. Kinugasa, Y. Hagihara, E. Niki, Y. Yoshida, H. Iwahashi, Metallomics 4, 2012, 350–352.

  57. Krishnamoorthy K., Veerapandian M., Yun K., Kim S.J.: New function of molybdenum trioxide nanoplates: Toxicity towards pathogenic bacteria through membrane stress. Colloid Surf. B 112, 2013, 521–524.

    Article  CAS  Google Scholar 

  58. Lopes E., Picarra S., Almeida P.L., deLencastre H., Aires-de-Sousa M.: Bactericidal efficacy of molybdenum oxide nanoparticles against antimicrobial-resistant pathogens. J. Med. Microbiol. 67, 2018, 1042–1046.

    Article  CAS  PubMed  Google Scholar 

  59. Gray E.P., Browning C.L., Wang M.J., Gion K.D., Chao E.Y., Koski K.J., Kane A.B., Hurt R.H.: Biodissolution and cellular response to MoO3 nanoribbons and a new framework for early hazard screening for 2D materials. Environ. Sci.-Nanotechnol. 5, 2018, 2545–2559.

    CAS  Google Scholar 

  60. Božinović, K., Nestić, D., Centa, U. G., Ambriović-Ristov, A., Dekanić, A., de Bisschop, L., Majhen, D. In-vitro toxicity of molybdenum trioxide nanoparticles on human keratinocytes. Toxicology, 444, 2020, 152564.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

MD would like to thank and acknowledge SCIF, SRMIST, Kattankulathur for providing the instrumentation facilities and SRMIST, Ramapuram campus for research support. The authors express their sincere appreciation to the Researchers Supporting Project Number (RSP2024R70), King Saud University, Riyadh, Saudi Arabia.

Funding

This work was supported by Researchers Supporting Project Number (RSP2024R70), King Saud University, Riyadh, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Contributions

M. Dhanasekar designed the entire work, conceptualization, synthesis of nanomaterial, data curation, writing original draft and supervision of the manuscript. Mudaliar Mahesh Margoni contributed in synthesis and characterization of nanomaterial formal analysis and writing part of the manuscript. Gnansekaran Chackaravarthi and Govindan Rajivgandhi contributed in the biological experiment, writing, and interpretation part of the manuscript. Muthuchamy Maruthupandy contributed entire cytotoxicity part of the manuscript. Nandhu Suresh contributed on the collection of resources, arrangement and material synthesis. V. Krishna involved in the interpretation and writing part of the nanomaterial. Ali Akbari-Fakhrabadi participated in the review& editing process. Franck Quero contributed in biological part of the entire manuscript. Natesan Manoharan contributed in the design, concept and analysis of the biological part of the manuscript. N. Asokan and Sakthivel Sankaran contributed in the review, writing and graphical representation of the manuscript. Naiyf. S. Alharbi contributed in the toxicity analysis of the manuscript.

Corresponding authors

Correspondence to M. Dhanasekar or Govindan Rajivgandhi.

Ethics declarations

Ethical Approval

Not Applicable.

Conflict of Interest

The authors have no relevant financial or non-financial interests to disclose. The authors have no competing interests to declare that are relevant to the content of this article.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dhanasekar, M., Margoni, M.M., Rajivgandhi, G. et al. Enhanced Crystallinity Behavior of Egg White Mediated h-MoO3 Using Acid Precipitation Method for Improved Anti-Bacterial Properties against Multi Drug Resistant Bacteria. J Clust Sci (2024). https://doi.org/10.1007/s10876-024-02626-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10876-024-02626-9

Keywords

Navigation