Skip to main content
Log in

Hydrazine-1-Carboxamide Conjugated Silver Nanoprobe for Trace Level Detection of Hg2+ with Potent Antibacterial Activity

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

Chemical sensors are detecting probes that translate information of analyte into a quantifiable signal for chemical exploration studies. Fabrication of (E)-2-(5-chloro-2-hydroxy-3-iodobenzylidene) hydrazine-1-carboxamide stabilized silver nanoparticles (1c-AgNPs) is one-dimensional synthesis avenue in present study exhibiting the ability of metal cations detection and selectivity of sensing mercury (Hg2+) ions in various samples of water and cosmetic creams. The newly synthesized silver nanoparticles (AgNPs) were comprehensively elucidated by ultraviolet-visible spectroscopy, Fourier-transform infrared (FTIR), zeta-sizer, atomic force microscopy (AFM), X-ray diffraction (XRD), Scanning electron microscopy (SEM) and thermal degradation analysis. 33.2 ± 1.3 nm sized polydispersed nanoparticles showed selective, sensitive and efficient detection of Hg2+ ions with detection limit of 0.274 µM by significant quenching in UV-Vis spectral band at 410 nm in real water and cosmetic cream samples. The theoretical findings displayed changes in reactive descriptors, electronic parameters, bond angles, and bond lengths of 1c and conjugated AgNPs using DFT method. The biological application of 1c-AgNPs showed significant synergistic potential as antibacterial agent against Escherichia coli and Staphylococcus aureus compared to ligand. Thus, the newly engineered 1c-AgNPs could be a favorable appliance in nature and health restoration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Scheme 2
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Data Availability

We declare that the all research data related to the article is available in the text of article and supplementary file.

References

  1. A. Soozanipour, H. Sohrabi, F. Abazar, A. Khataee, A. Noorbakhsh, M. Asadnia, A. Taher-Kafrani,. R. Majidi, A. Razmjou, Adv. Mater. Technol. (2021) https://doi.org/10.1002/admt.202000765

    Article  Google Scholar 

  2. S. Alex, J. Environ. Sci. Health. (2018). https://doi.org/10.15436/2378-6841.18.1906

    Article  Google Scholar 

  3. S. R. Palathoti, V. O. Otitolaiye, R. Mahfud, M. Al Rawahi, Int. J. Occup. Saf. Health. (2022). https://doi.org/10.3126/ijosh.v12i4.43125

    Article  Google Scholar 

  4. Y. Date, H. Masaki, A. Aota, K. Sasaki, Y. Namiki, T.R. Glass, N. Ohmura, Anal Sci.(2020). https://doi.org/10.2116/analsci.19P334

  5. C. S. Munita, M. D. Glascock, R. Hazenfratz, Recent advances in analytical techniques (2019). https://doi.org/10.2174/9781681085722119030007

  6. Y. Wang, A. Zhu, Y. Fang, C. Fan, Y. Guo, Z. Tan, J. Environ. Sci. (2022). https://doi.org/10.1016/j.jes.2021.08.013

    Article  Google Scholar 

  7. M. Marieeswaran, P. Panneerselvam, RSC Adv. (2020). https://doi.org/10.1039/C9RA08274C

  8. O. Çaylak, Ş. G. Elçi, A. Höl, A. Akdoğan, Ü. Divrikli, L. Elçi, Food Chem. (2019). https://doi.org/10.1016/j.foodchem.2018.08.107

    Article  PubMed  Google Scholar 

  9. Y. Xing, J. Han, X. Wu, D.-T. Pierce, J.-X. Zhao, Microchim. Acta. 187, 1–10. (2020).

    Article  Google Scholar 

  10. A. Azhar, H. M. A. Amin, Microchem. J. (2022): 107166. https://doi.org/10.1016/j.microc.2021.107166

  11. B. Franziska, M. Loessl, A. J. Baeumner, Microchim. Acta. (2023): 91. https://doi.org/10.1007/s00604-023-05666-6

  12. A. Eman, J. Anal. Meth. Chem. (2020). doi: https://doi.org/10.1155/2020/6026312

    Article  Google Scholar 

  13. A. J. Hyun, S. J. Park, O. S. Kwon, J. Bae, J. Jang. ACS Nano. (2013). https://doi.org/10.1021/nn402702w

    Article  Google Scholar 

  14. A. Giancarla, C. Zanoni, L. R. Magnaghi, R. Biesuz, Chemosensors. (2021) https://doi.org/10.3390/chemosensors9110305

  15. P. Paolo, L. Burratti, I. Venditti, Chemosensors. (2020). https://doi.org/10.3390/chemosensors8020026

  16. A. Jabbar, A. Abbas, N. Assad, M. Naeem-ul-Hassan, H. A. Alhazmi, A. Najmi, K. Zoghebi, M. Al Bratty, A. Hanbashi, H. M. A. Amin, RSC Adv. (2023). doi: https://doi.org/10.1039/d3ra05070j.

    Article  PubMed  PubMed Central  Google Scholar 

  17. P. Prosposito, L. Burratti, A. Bellingeri, G. Protano, C. Faleri, I. Corsi, C. Battocchio, Nanomaterials. (2019). doi: https://doi.org/10.3390/nano9101353.

  18. R. del Portal-Vazquez, Paula, G. López-Pérez, R. Prado-Gotor, C. Román-Hidalgo, M. J. Martín-Valero, Materials. (2020). doi:https://doi.org/10.3390/ma13061373

  19. Y. Thepchuay, N. Jommala, T. Wonglakhon, P. Nuengmatcha, B. Ninwong, N. Saengsane, P. Sricharoen, N. Limchoowong, Arab. J. Sci. Eng. (2023). https://doi.org/10.1007/s13369-023-07894-7

    Article  Google Scholar 

  20. M. L. M. Budlayan, J. N. Patricio, J. P. B. Lagare, L. B. de la Rosa, S. D. Arco, A. C. Alguno, E. bS. Austria, J. P. Manigo, R. Y. Capangpangan, Funct. Compos. Struc. (2021). DOI https://doi.org/10.1088/2631-6331/ac25e9

    Article  Google Scholar 

  21. S. Amin, M. Sher, A. Ali, M. F. Rehman, A. Hayat, M. Ikram, A. Abbas, H. M. A. Amin, Environ. Nanotechnol. Monit. Manag. (2022). doi: https://doi.org/10.1016/j.enmm.2022.100735

    Article  Google Scholar 

  22. E. C. R. Lopez. Eng. Proc. (2023). https://doi.org/10.3390/CSAC2023-15168

  23. F. Ahmed, H. Kabir, H. Xiong, Front. Chem. (2020). https://doi.org/10.3389/fchem.2020.591958

    Article  PubMed  PubMed Central  Google Scholar 

  24. J. Jeevanandam, S. Krishnan, Y. S. Hii, S. Pan, Y. S. Chan, C. Acquah, M. K. Danquah, J. Rodrigues. J Nanostruc. Chem. (2022). doi: https://doi.org/10.1007/s40097-021-00465-y.

    Article  Google Scholar 

  25. S. K. Chandraker, M. Lal, P. Dhruve, R. P. Singh, R. Shukla, Front. Mol. Biosci. (2021). https://doi.org/10.3389/fmolb.2020.593040

    Article  PubMed  PubMed Central  Google Scholar 

  26. A. L. Suherman, G. Zampardi, H. M. A. Amin, N. P. Young, R. G. Compton, Phys. Chem. Chem. Phys. (2019). doi: https://doi.org/10.1039/C9CP00056A

    Article  PubMed  Google Scholar 

  27. A. Rossi, M. Cuccioloni, L. R. Magnaghi, R. Biesuz, M. Zannotti, L. Petetta, M. Angeletti, R. Giovannetti, Chemosensors. (2022). https://doi.org/10.3390/chemosensors10110483

  28. I. Ali, S., F. Ahmed, S. Yasmeen, M. Imran, I. I. Althagafi, M. R. Shah, Colloids Surf. A: Physicochem. Eng. Aspects. (2021). DOI:https://doi.org/10.1016/j.colsurfa.2021.127419

    Article  Google Scholar 

  29. A. Jouyban, E. Rahimpour, Talanta. (2020). https://doi.org/10.1016/j.talanta.2020.121071

  30. A. Y.El Gamal,, M. R. Tohamy, M. I. Abou-Zaid, M. M. Atia, T. El Sayed, K. Y. Farroh, Arch. Virol. (2022). https://doi.org/10.1007/s00705-021-05280-y

    Article  PubMed  Google Scholar 

  31. L. David, B. Moldovan, Nanomaterials. (2020). https://doi.org/10.3390/nano10020202

  32. I. Ali, S. Khan, Z. A. Shah, F. Ahmed, I. Shah, A. Hameed, R. Ullah, M. R. Shah, ChemistrySelect. (2024). doi:https://doi.org/10.1002/slct.202304484

  33. C. Talodthaisong, P. Sangiamkittikul, P. Chongwichai, A. Saenchoopa, S. Thammawithan, R. Patramanon, S. Kosolwattana, S. Kulchat, ACS. Omega. (2023). https://doi.org/10.1021/acsomega.3c03789

    Article  PubMed  PubMed Central  Google Scholar 

  34. P. Saha, M. M. Billah, A. B. M. N. Islam, M. A. Habib, M. Mahiuddin, Glob. Chall. (2023). doi: https://doi.org/10.1002/gch2.202300072.

    Article  PubMed  PubMed Central  Google Scholar 

  35. I. Ivanišević, Sensors. (2023). https://doi.org/10.3390/s23073692

  36. F. Beck, M. Loessl, A. J. Baeumner, Mikrochim. Acta. (2023). doi: https://doi.org/10.1007/s00604-023-05666-6.

    Article  PubMed  PubMed Central  Google Scholar 

  37. W. Rungratanawanich, G. Cenini, A. Mastinu, M. Sylvester, A. Wilkening, G. Abate, S. A. Bonini, Nutrients. (2019). https://doi.org/10.3390/nu11040753

    Article  PubMed  PubMed Central  Google Scholar 

  38. J. Ceramella, D. Iacopetta, A. Catalano, F. Cirillo, R. Lappano, M. S. Sinicropi, Antibiot. (2022). https://doi.org/10.3390/antibiotics11020191

  39. K. S. Munawar, S. M. Haroon, S. A. Hussain, H. Raza, J. Basic. Appl. Sci. (2018). https://doi.org/10.6000/1927-5129.2018.14.34

    Article  Google Scholar 

  40. R. Shrivastava, P. Gupta, Results. Chem. (2023). https://doi.org/10.1016/j.rechem.2023.100933

    Article  Google Scholar 

  41. L. Ma, W. Li, S. Zhu, L. Wang, S. Guan, Corros. Sci. (2021). https://doi.org/10.1016/j.corsci.2021.109268

    Article  Google Scholar 

  42. A. Minhaz, N. Khan, N. Jamila, F. Javed, M. Imran, S. Shuja, S. N. Khan, A. Atlas, M. R. Shah, Arab. J. Chem. (2020). https://doi.org/10.1016/j.arabjc.2020.10.016

    Article  Google Scholar 

  43. M. S. More, P. G. Joshi, Y. K. Mishra, P. K. Khanna, Mater. Today Chem. (2019). https://doi.org/10.1016/j.mtchem.2019.100195

    Article  PubMed  PubMed Central  Google Scholar 

  44. X. Zhong, Z. Li, R. Shi, L. Yan, Y. Zhu, ACS Appl. Nano Mater. (2022). https://doi.org/10.1021/acsanm.2c03477

    Article  Google Scholar 

  45. S. U. Qazi, A. Naz, A. Hameed, F. A. Osra, S. Jalil, J. Iqbal, Bioorg. Chem. (2021). https://doi.org/10.1016/j.bioorg.2021.105209

    Article  PubMed  Google Scholar 

  46. A. Ullah, P. Fazil, G. Rukh, M. T. Muhammad, M. Rahim, M. Ateeq, R. Khattak, M. S. Khan, Coatings. (2021). https://doi.org/10.3390/coatings11111293

  47. E. Avirdi, H. K. Paumo, B. P. Kamdem, M. B. Singh, ACS. Omega. (2023). https://doi.org/10.1021/acsomega.3c06171

    Article  PubMed  PubMed Central  Google Scholar 

  48. M. Devi, S. Jaiswal, N. Yaduvanshi, S. Jain, S. Jain, J. Mol. Struct. (2023). https://doi.org/10.1016/j.molstruc.2023.135571

    Article  Google Scholar 

  49. E. A. Owen, G. I. Williams, J. Sci. Instrum. (1954). https://doi.org/10.1088/0950-7671/31/2/305

    Article  Google Scholar 

  50. S. Dabagh, S. A. Haris, B. K. Isfahani, Y. N. Ertas, ACS. Appl. Bio. Mater. (2023). https://doi.org/10.1021/acsabm.3c00122

    Article  PubMed  PubMed Central  Google Scholar 

  51. K. C. Dos Santos, M. F. G. F. da Silva, E. R. Pereira-Filho, J. B. Fernandes, I. Polikarpov, M. R. Forim, Nanotechnol. Sci. Appl. (2012). https://doi.org/10.2147/NSA.S32837

    Article  PubMed  PubMed Central  Google Scholar 

  52. O. Erdogan, M. Abbak, G. M. Demirbolat, F. Birtekocak, M. Aksel, S. Pasa, O. Cevik., PloS. One. (2019). https://doi.org/10.1371/journal.pone.0216496

    Article  PubMed  PubMed Central  Google Scholar 

  53. A. N. Awan, R. Khalid, A. Javed, M. R. Shah, S. A. Ali, Plasmonics. (2023). https://doi.org/10.1007/s11468-023-01817-w

  54. A. Dhaka, S. C. Mali, S. Sharma, R. Trivedi, Results. Chem. (2023). https://doi.org/10.1016/j.rechem.2023.101108

    Article  Google Scholar 

  55. S. Dawadi, S. Katuwal, A. Gupta, U. Lamichhane, R. Thapa, S. Jaisi, G. Lamichhane, D. P. Bhattarai, N. Parajuli, J. Nanomater. (2021). https://doi.org/10.1155/2021/6687290

    Article  Google Scholar 

  56. S. Chen, H. Dong, J. Yang, Sensors. (2020). https://doi.org/10.3390/s20061690

    Article  PubMed  PubMed Central  Google Scholar 

  57. S. A. Alsareii, A. M. Alamri, M. Y. AlAsmari, M. A. Bawahab, M. H. Mahnashi, I. A. Shaikh, Molecules. (2022). https://doi.org/10.3390/molecules27196306

    Article  PubMed  PubMed Central  Google Scholar 

  58. A. M. El Badawy, T. P. Luxton, R. G. Silva, K. G. Scheckel, M. T. Suidan, T. M. Tolaymat, Environ. Sci. Technol. (2010). https://doi.org/10.1021/es902240k

    Article  PubMed  Google Scholar 

  59. M. I. Irfan, F. Amjad, A. Abbas, M. F. U. Rehman, F. Kanwal, M. Saeed, S. Ullah, C. Lu, Mol. (2022). doi: https://doi.org/10.3390/molecules27113363.

    Article  Google Scholar 

  60. P. Bélteky, A. Rónavári, N. Igaz, B. Szerencsés, I. Y. Tóth, I. Pfeiffer, M. Kiricsi, Z. Kónya, Int. J. Nanomed. (2019). doi: https://doi.org/10.2147/IJN.S185965.

    Article  Google Scholar 

  61. M. Wang, H. Li, Y. Li, F. Mo, Z. Li, R. Chai, H. Wang, Nanomater. (2020). https://doi.org/10.3390/nano10061042

  62. A. M. Ferreira, A. Vikulina, M. Loughlin, D. Volodkin, RSC Adv. (2023). doi: https://doi.org/10.1039/d3ra00917c.

    Article  PubMed  PubMed Central  Google Scholar 

  63. A. G. Dastidar, in Methods in Chemical Process Safety, ed. By P. R. Amyotte, F. I. Khan (Elsevier, California, 2019), p. 71–122. https://doi.org/10.1016/bs.mcps.2019.04.002

  64. R. G. Chaudhary, P. Ali, N. V, Gandhare, J. A. Tanna, H. D. Junejo, Arab. J. Chem. (2019). https://doi.org/10.1016/j.arabjc.2016.03.008

    Article  Google Scholar 

  65. M. S. El-Attar, F. M. Ahmed, S. A. Sadeek, S. F. Mohamed, W. A. Zordok, W. H. El‐Shwiniy, Appl. Organomet. Chem. (2022). https://doi.org/10.1002/aoc.6826

    Article  Google Scholar 

  66. L. M. Abbass, S. A. Sadeek, M. A. E. R. Aziz, W. A. Zordok, J. Mol. Liq. (2023). https://doi.org/10.1016/j.molliq.2023.122460

    Article  Google Scholar 

  67. S. A. Jasim, M. M. Kadhim, V. Kn, I. Raya, S. J. Shoja, W. Suksatan, M. H. Ali, E. Kianfar, Braz. J. Phys. (2022). https://doi.org/10.1007/s13538-021-01033-z

    Article  Google Scholar 

  68. M. Ismail, M. I. Khan, K. Akhtar, J. Seo, M. A. Khan, A. M. Asiri, S. B. Khan, J. Mater. Sci. Mater. Electron. (2019). https://doi.org/10.1007/s10854-019-01049-x

    Article  Google Scholar 

  69. P. Middya, S. G. Mondal, P. Bhowmik, S. Bera, S. Chattopadhyay, Inorganica. Chim. Acta. (2023). https://doi.org/10.1016/j.ica.2023.121754

    Article  Google Scholar 

  70. A. M. Graboski, J. Martinazzo, S. C. Ballen, J. Steffens, C. Steffens, in Nanotechnology in the Beverage Industry, ed. By A. Amrane, S. Rajendran, T. A. Nguyen, A. A. Assadi, A. M. Sharoba, (Elsevier, 2020), p. 115–128, https://doi.org/10.1016/B978-0-12-819941-1.00004-3

  71. T. Mustapha, N. Misni, N. R. Ithnin, A. M. Daskum, N. Z. Unyah, Int. J. Environ. Res. Public. Health. (2022). https://doi.org/10.3390/ijerph19020674

    Article  PubMed  PubMed Central  Google Scholar 

  72. S. Khan, M. Muhammad, H. M. Al-Saidi, A. A. Hassanian, W. Alharbi, K. H. Alharbi, J. Saudi Chem. Soc. (2022). https://doi.org/10.1016/j.jscs.2022.101503

    Article  Google Scholar 

  73. P. Bélteky, A. Rónavári, D. Zakupszky, E. Boka, N. Igaz, B. Szerencsés, I. Pfeiffer, C. Vágvölgyi, M. Kiricsi, Z. Kónya, Int. J. Nanomed. (2021). https://doi.org/10.2147/IJN.S304138.

    Article  Google Scholar 

  74. K. I. Peterson, M. E. Lipnick, L. A. Mejia, D. P. Pullman, J. Phys. Chem. C. (2016). https://doi.org/10.1021/acs.jpcc.6b07329

    Article  Google Scholar 

  75. A. Abbas, H. M. Amin, M. Akhtar, M. A. Hussain, C. Batchelor-McAuley, R. G. Compton, Chem. Naissensis, (2020). doi:https://doi.org/10.46793/ChemN3.1.050A

    Article  Google Scholar 

  76. S. T. Galatage, A. S. Hebalkar, S. V. Dhobale, O. R. Mali, P. S. Kumbhar, S. V. Nikade, S. G. Killedar, Silver Micro-Nanoparticles Prop. Synth. Charact. Appl, (2021). https://doi.org/10.5772/intechopen.99173

    Article  Google Scholar 

  77. I. Ali, I. O. Isaac, F. Ahmed, F. Aslam, S. Ali, M. Imran, R. D. Alharthy, M. R. Shah, M. I. Malik, A. Hameed, ChemistrySelect. (2019). DOI: https://doi.org/10.1002/slct.201901381

  78. N. A. Qasem, R.H. Mohammed, D.U. Lawal, Npj. Clean Water. (2021). https://doi.org/10.1038/s41545-021-00144-z

    Article  Google Scholar 

  79. H. A. Younus, F. Saleem, A. Hameed, M. Al-Rashida, R. A. Al-Qawasmeh, M. El-Naggar, S. Rana, Expert. Opin. Ther. Pat. (2023). https://doi.org/10.1080/13543776.2023.2297729

    Article  PubMed  Google Scholar 

  80. S. Ullah, R. Khalid, M. F. Rehman, M. I. Irfan, A. Abbas, A. Alhoshani, F. Anwar, H. atem M. A. Amin. Front. Chem. (2023). https://doi.org/10.3389/fchem.2023.1202252

    Article  PubMed  Google Scholar 

  81. A. B. Siddique, D. Amr, A. Abbas, L. Zohra, M. I. Irfan, A. Alhoshani, S. Ashraf, H. M. A. Amin. Int. J. Biol. Macromol. (2024). doi: https://doi.org/10.1016/j.ijbiomac.2023.128009.

    Article  PubMed  Google Scholar 

  82. P. Bhuyar, M. H. A. Rahim, S. Sundararaju, R. Ramaraj, G. P. Maniam, N. Govindan, Beni-Suef Univ. J. Basic Appl. Sci. (2020). https://doi.org/10.1186/s43088-019-0031-y

    Article  Google Scholar 

  83. A. Menichetti, A. Mavridi-Printezi, D. Mordini, M. Montalti, J. Funct. Biomater. (2023). https://doi.org/10.3390/jfb14050244

    Article  PubMed  PubMed Central  Google Scholar 

  84. G. E. Yılmaz, I. Göktürk, M. Ovezova, F. Yılmaz, S. Kılıç, A. Denizli, Hygiene. (2023). https://doi.org/10.3390/hygiene3030020

  85. S. Philip, K. Mohanan. (2023). https://doi.org/10.21203/rs.3.rs-3364692/v1

  86. V. N. Reena, K. S. Kumar, T. Shilpa, R. Aswati Nair, G. S. Bhagyasree, B. Nithyaja, J. Fluoresc. (2023). https://doi.org/10.1007/s10895-023-03193-4

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We acknowledge the support by Higher Education Commission (HEC), Pakistan under the Indigenous Scholarship Program.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

A.A.- Conceptualization, Methodology, Formal analysis, Visualization, Writing- Original draft preparation. A. N. A. - Supervision, Conceptualization, Methodology, Resources, Writing- review and editing.

Corresponding author

Correspondence to Asia Naz Awan.

Ethics declarations

Ethical Approval

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmed, A., Awan, A.N. Hydrazine-1-Carboxamide Conjugated Silver Nanoprobe for Trace Level Detection of Hg2+ with Potent Antibacterial Activity. J Clust Sci (2024). https://doi.org/10.1007/s10876-024-02625-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10876-024-02625-w

Keywords

Navigation