Skip to main content
Log in

Manganese Iron Oxide Nanoparticles for Magnetic Hyperthermia, Antibacterial and ROS Generation Performance

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

The preparation of manganese substituted iron oxide magnetic nanoparticles by polyol synthesis route. Due to the unique properties, diethylene glycol (DEG) and tri-ethylene glycol (TEG) used as a solvent in synthesis method with different volumetric variations. The structural, morphological and hyperthermic properties of prepared samples are investigated. Formation of single-phase cubic spinel lattice for all compositions confirmed by X-ray diffraction and crystallite size was found to be decreased from 20.6 ± 1.3 to 15.2 ± 1.7 nm with varying ratio of DEG/TEG. Transmission electron microscopy (TEM) analysis displayed spherical grains with an agglomeration of the MnFe2O4 magnetic nanoparticles (MNPs). Heating ability of MNPs studied with an induction heating system under different magnetic field strengths at 20 kA/m and 26.6 kA/m by varying nanoparticle concentrations at fixed frequency of 278 kHz. Antimicrobial activity on E. coli and antifungal activity on C. albicans showed effectiveness of MNPs at 10 mg/mL for such activities. Additionally, ROS induction in presence of MNPs illustrates probable action against E. coli and C. albicans and as antibacterial and antifungal agent in the medical field due to ROS generation ability.It has been shown that these optimized MNPs will play multifaceted roles for magnetic hyperthermia therapy as heat mediators, and antibacterial/antifungal agents owing to their magnetic induction heating properties and biological activities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

On request to the corresponding author data on work will be available.

References

  1. Peters JA. Relaxivity of manganese ferrite nanoparticles. Progress in Nuclear Magnetic Resonance Spectroscopy. 2020;120:72–94. https://doi.org/10.1016/j.pnmrs.2020.07.002.

    Article  PubMed  Google Scholar 

  2. Brero F, Albino M, Antoccia A, Arosio P, Avolio M, Berardinelli F, Bettega D, Calzolari P, Ciocca M, Corti M, Facoetti A. Hadron therapy, magnetic nanoparticles and hyperthermia: A promising combined tool for pancreatic cancer treatment. Nanomaterials. 2020;10(10):1919. https://doi.org/10.3390/nano10101919.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Abdollahy M, Peyman H, Roshanfekr H, Idris AO, Azizi S, Sibali LL. Synthesis and characterization of a smart polymer-coated core–shell MnFe2O4@ organometallic framework for targeted drug delivery. Chemical Papers. 2023;77(7):3897–909. https://doi.org/10.1007/s11696-023-02750-2.

    Article  CAS  Google Scholar 

  4. Dabagh S, Haris SA, Ertas YN. Synthesis, Characterization and potent antibacterial activity of metal-substituted spinel ferrite nanoparticles. Journal of Cluster Science. 2023;34(4):2067–78. https://doi.org/10.1007/s10876-022-02373-9.

    Article  CAS  Google Scholar 

  5. Kalaiselvan CR, Laha SS, Somvanshi SB, Tabish TA, Thorat ND, Sahu NK. Manganese ferrite (MnFe2O4) nanostructures for cancer theranostics. Coordination Chemistry Reviews. 2022;473:214809. https://doi.org/10.1016/j.ccr.2022.214809.

    Article  CAS  Google Scholar 

  6. Jardim KV, Palomec-Garfias AF, Andrade BYG, Chaker JA, Báo SN, Márquez-Beltrán C, et al. Novel magneto-responsive nanoplatforms based on MnFe2O4 nanoparticles layer-by-layer functionalized with chitosan and sodium alginate for magnetic controlled release of curcumin. Mater Sci Eng C. 2018;92:184–95. https://doi.org/10.1016/j.msec.2018.06.039

    Article  CAS  Google Scholar 

  7. Chandunika RK, Vijayaraghavan R, Sahu NK. Magnetic hyperthermia application of MnFe2O4nanostructures processed through solvents with the varying boiling point. Mater Res Express. 2020;7(6). https://doi.org/10.1088/2053-1591/ab955e

  8. Ghutepatil PR, Pawar SH. Structural, Morphological, Magnetic and Self-Heating Studies of One-Step Polyol Synthesized Manganese Ferrite (fffre3MnFe2O4) Nanoparticles. Int J Nanosci. 2020;19(1):1–8. https://doi.org/10.1142/S0219581X19500030.

    Article  CAS  Google Scholar 

  9. IJff M, Crezee J, Oei AL, Stalpers LJ, Westerveld H. The role of hyperthermia in the treatment of locally advanced cervical cancer: a comprehensive review. International Journal of Gynecologic Cancer. 2022;32(3). https://doi.org/10.1136/ijgc-2021-002473.

  10. Elming PB, Sørensen BS, Oei AL, Franken NA, Crezee J, Overgaard J, Horsman MR. Hyperthermia: The optimal treatment to overcome radiation resistant hypoxia. Cancers. 2019;11(1):60. https://doi.org/10.3390/cancers11010060.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Gavilán H, Avugadda SK, Fernández-Cabada T, Soni N, Cassani M, Mai BT, Chantrell R, Pellegrino T. Magnetic nanoparticles and clusters for magnetic hyperthermia: Optimizing their heat performance and developing combinatorial therapies to tackle cancer. Chemical Society Reviews. 2021;50(20):11614–67. https://doi.org/10.1039/D1CS00427A.

    Article  PubMed  Google Scholar 

  12. Ding B, Shao S, Jiang F, Dang P, Sun C, Huang S, Ma PA, Jin D, Kheraif AA, Lin J. MnO2-disguised upconversion hybrid nanocomposite: an ideal architecture for tumor microenvironment-triggered UCL/MR bioimaging and enhanced chemodynamic therapy. Chemistry of Materials. 2019 Mar 20;31(7):2651–60. https://doi.org/10.1021/acs.chemmater.9b00893.

    Article  CAS  Google Scholar 

  13. Akhlaghi N, Najafpour-Darzi G. Manganese ferrite (MnFe2O4) Nanoparticles: From synthesis to application -A review. J Ind Eng Chem. 2021;103:292–304. https://doi.org/10.1016/j.jiec.2021.07.043.

    Article  CAS  Google Scholar 

  14. Patade SR, Andhare DD, Somvanshi SB, Jadhav SA, Khedkar M V., Jadhav KM. Self-heating evaluation of superparamagnetic MnFe2O4 nanoparticles for magnetic fluid hyperthermia application towards cancer treatment. Ceram Int. 2020;46(16):25576–83.https://doi.org/10.1016/j.ceramint.2020.07.029

    Article  CAS  Google Scholar 

  15. Anithkumar M, Rajan S A, Khan A, Kaczmarek B, Michalska-Sionkowska M, Łukowicz K, et al. Glucose Oxidase-Loaded MnFe2O4 Nanoparticles for Hyperthermia and Cancer Starvation Therapy. ACS Appl Nano Mater. 2022;6:2605–14. https://doi.org/10.1021/acsanm.2c04960

    Article  CAS  Google Scholar 

  16. Islam K, Haque M, Kumar A, Hoq A, Hyder F, Hoque SM. Manganese ferrite nanoparticles (MnFe2 O4): Size dependence for hyperthermia and negative/positive contrast enhancement in MRI. Nanomaterials. 2020;10(11):1–23. https://doi.org/10.3390/nano10112297

    Article  CAS  Google Scholar 

  17. Sanz B, Cabreira-gomes R, Torres TE, Valdés DP. Low Dimensional Assemblies of Magnetic MnFe 2 O 4 Nanoparticles and Direct In Vitro Measurements of Enhanced Heating Driven by Dipolar Interactions: Implications for Magnetic Hyperthermia. ACS Appl Nano Mater. 2020;3(9):1–63. https://doi.org/10.1021/acsanm.0c01545

    Article  CAS  Google Scholar 

  18. Mondal DK, Borgohain C, Paul N, Borah JP. Improved heating efficiency of bifunctional MnFe2O4/ZnS nanocomposite for magnetic hyperthermia application. Phys B Condens Matter. 2019;567:122–8. https://doi.org/10.1016/j.physb.2018.11.068

    Article  ADS  CAS  Google Scholar 

  19. Kalaiselvan CR, Thorat ND, Sahu NK. Carboxylated PEG-Functionalized MnFe2O4Nanocubes Synthesized in a Mixed Solvent: Morphology, Magnetic Properties, and Biomedical Applications. ACS Omega. 2021;6(8):5266–75. https://doi.org/10.1021/acsomega.0c05382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Akbarzadeh A, Samiei M, Davaran S. Magnetic nanoparticles: Preparation, physical properties, and applications in biomedicine. Nanoscale Res Lett. 2012;7(1):144. http://www.nanoscalereslett.com/content/7/1/144

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  21. Ali A, Shah T, Ullah R, Zhou P, Guo M, Ovais M, et al. Review on Recent Progress in Magnetic Nanoparticles: Synthesis, Characterization, and Diverse Applications. Front Chem. 2021;9(July):1–25. https://doi.org/10.3389/fchem.2021.629054

    Article  CAS  Google Scholar 

  22. Sousa F, Ferreira D, Reis S, Costa P. Current insights on antifungal therapy: Novel nanotechnology approaches for drug delivery systems and new drugs from natural sources. Pharmaceuticals. 2020;13(9):1–30. https://doi.org/10.3390/ph13090248

    Article  CAS  Google Scholar 

  23. He Q, Liu J, Liang J, Liu X, Ding Z, Tuo D, Li W. Sodium acetate orientated hollow/mesoporous magnetite nanoparticles: Facile synthesis, characterization and formation mechanism. Applied sciences. 2018;8(2):292. https://doi.org/10.3390/app8020292.

    Article  Google Scholar 

  24. Vilas-Boas V, Carvalho F, Espiña B. Magnetic hyperthermia for cancer treatment: Main parameters affecting the outcome of in vitro and in vivo studies. Molecules. 2020;25(12):1–30. https://doi.org/10.3390/molecules25122874

    Article  CAS  Google Scholar 

  25. Loizou K, Mourdikoudis S, Mourdikoudis S, Sergides A, Sergides A, Besenhard MO, et al. Rapid Millifluidic Synthesis of Stable High Magnetic Moment FexCyNanoparticles for Hyperthermia. ACS Appl Mater Interfaces. 2020;12(25):28520–31. https://doi.org/10.1021/acsami.0c06192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ning P, Liu CC, Wang YJ, Li XZ, Ranjithkumar R, Gan ZH, et al. Facile synthesis, antibacterial mechanisms and cytocompatibility of Ag–MnFe2O4 magnetic nanoparticles. Ceram Int. 2020;46(12):20105–15. https://doi.org/10.1016/j.ceramint.2020.05.085

    Article  CAS  Google Scholar 

  27. Yang H, Jiang F, Zhang L, Wang L, Luo Y, Li N, et al. Multifunctional l-arginine-based magnetic nanoparticles for multiple-synergistic tumor therapy. Biomater Sci. 2021;9(6):2230–43. https://doi.org/10.1039/D0BM01932A

    Article  CAS  PubMed  Google Scholar 

  28. Zhang Z, He X, Zhou C, Reaume M, Wu M, Liu B, et al. Iron Magnetic Nanoparticle-Induced ROS Generation from Catechol-Containing Microgel for Environmental and Biomedical Applications. ACS Appl Mater Interfaces. 2020;12(19):21210–20. https://doi.org/10.1021/acsami.9b19726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Phumying S, Labuayai S, Swatsitang E, Amornkitbamrung V, Maensiri S. Nanocrystalline spinel ferrite (MFe2O4, M = Ni, Co, Mn, Mg, Zn) powders prepared by a simple aloe vera plant-extracted solution hydrothermal route. Materials Research Bulletin. 2013;48(6):2060–5. https://doi.org/10.1016/j.materresbull.2013.02.042.

    Article  CAS  Google Scholar 

  30. Qu J, Cheah P, Adams D, Collen C, Zhao Y. The influence of the polyol solvents on the continuous growth of water-dispersible iron oxide nanoparticles. Journal of Materials Research. 2024;39(1):165–75. https://doi.org/10.1557/s43578-023-01236-x.

    Article  ADS  CAS  Google Scholar 

  31. Qayoom M, Shah KA, Firdous A, Dar GN. Synthesis of sodium acetate oriented Ni (II)-doped iron oxide nanospheres for efficient acetone sensing. Sensors International. 2022;3:100150. https://doi.org/10.1016/j.sintl.2021.100150.

    Article  Google Scholar 

  32. He Q, Liu J, Liang J, Liu X, Ding Z, Tuo D, Li W. Sodium acetate orientated hollow/mesoporous magnetite nanoparticles: Facile synthesis, characterization and formation mechanism. Applied sciences. 2018;8(2):292. https://doi.org/10.3390/app8020292.

    Article  Google Scholar 

  33. Kharat PB, Somvanshi SB, Somwanshi SB, Mopari AM. Synthesis, Characterization and Hyperthermic Evaluation of PEGylated Superparamagnetic MnFe2O4 Ferrite Nanoparticles for Cancer Therapeutics Applications. Macromol Symp. 2021;400(1):2–5. https://doi.org/10.1002/masy.202100130

  34. Nitika, Rana A, Kumar V. Influence of temperature on structural, magnetic and thermal properties of superparamagnetic MnFe2O4 nanoparticles. Mater Today Proc. 2021;45:4774–6. https://doi.org/10.1016/j.matpr.2021.01.209

  35. Mdlalose WB, Mokhosi SR, Dlamini S, Moyo T, Singh M. Effect of chitosan coating on the structural and magnetic properties of MnFe2O4 and Mn0.5Co0.5Fe2O4 nanoparticles. AIP Adv. 2018;8(5):0–6. https://doi.org/10.1063/1.5007760.

    Article  CAS  Google Scholar 

  36. Fatima H, Charinpanitkul T, Kim KS. Fundamentals to apply magnetic nanoparticles for hyperthermia therapy. Nanomaterials. 2021;11(5):1–20. https://doi.org/10.3390/nano11051203.

    Article  Google Scholar 

  37. Hoque SM, Islam MK, Hoq A, Haque MM, Maritim S, Coman D, et al. Comparative Study of Specific Loss Power and Transverse Relaxivity of Spinel Ferrite Nanoensembles Coated With Chitosan and Polyethylene Glycol. Front Nanotechnol. 2021:1–13. https://doi.org/10.3389/fnano.2021.644080.

  38. Kim J wook, Wang J, Kim H, Bae S. Concentration-dependent oscillation of specific loss power in magnetic nanofluid hyperthermia. Sci Rep. 2021;11(1):1–10. https://doi.org/10.1038/s41598-020-79871-1

    Article  ADS  CAS  Google Scholar 

  39. Seo Y, Wang ZJ. Measurement and evaluation of specific absorption rate and temperature elevation caused by an artificial hip joint during MRI scanning. Sci Rep. 2021;11(1):1–12. https://doi.org/10.1038/s41598-020-80828-7

    Article  ADS  CAS  Google Scholar 

  40. Nguyen LH, Phuc NX, Manh DH, Nam NH, Truong NX, Quynh N V., et al. Size-Dependent Magnetic Heating of MnFe2O4 Nanoparticles. J Electron Mater 2021;50(9):5318–26. https://doi.org/10.1007/s11664-021-09056-7

    Article  ADS  CAS  Google Scholar 

  41. Ota S, Trisnanto SB, Takeuchi S, Wu J, Cheng Y, Takemura Y. Quantitation method of loss powers using commercial magnetic nanoparticles based on superparamagnetic behavior influenced by anisotropy for hyperthermia. J Magn Magn Mater. 2021;538:168313. https://doi.org/10.1016/j.jmmm.2021.168313

    Article  CAS  Google Scholar 

  42. Behdadfar B, Kermanpur A, Sadeghi-Aliabadi H, Morales MDP, Mozaffari M. Synthesis of high intrinsic loss power aqueous ferrofluids of iron oxide nanoparticles by citric acid-assisted hydrothermal-reduction route. J Solid State Chem.2012;187:20–6. https://doi.org/10.1016/j.jssc.2011.12.011

    Article  ADS  CAS  Google Scholar 

  43. Nehra P, Chauhan RP, Garg N, Verma K. Antibacterial and antifungal activity of chitosan coated iron oxide nanoparticles. Br J Biomed Sci. 2018;75(1):13–8. https://doi.org/10.1080/09674845.2017.1347362

    Article  CAS  PubMed  Google Scholar 

  44. Mai T, Hilt JZ. Magnetic nanoparticles: reactive oxygen species generation and potential therapeutic applications. J Nanoparticle Res. 2017;19(7). https://doi.org/10.1007/s11051-017-3943-2

  45. Wang C, Hu X, Gao Y, Ji Y. ZnO nanoparticles treatment induces apoptosis by increasing intracellular ROS levels in LTEP-a-2 cells. Biomed Res Int. 2015;2015. https://doi.org/10.1155/2015/423287

  46. Sharmila G, Muthukumaran C, Sandiya K, Santhiya S, Pradeep RS, Kumar NM, et al. Biosynthesis, characterization, and antibacterial activity of zinc oxide nanoparticles derived from Bauhinia tomentosa leaf extract. J Nanostructure Chem.2018;8(3):293–9. https://doi.org/10.1007/s40097-018-0271-8

    Article  CAS  Google Scholar 

Download references

Funding

Author Vishwajeet M. Khot thankful to the D. Y. Patil Education Society (Deemed to be University), Kolhapur for financial support through the research project (sanction no. DYPES/DU/R&D/2021/276). Author Sagar A. Patil gratefully thank to Chhatrapati Shahu Maharaj Research Training and Human Development Institute (SARTHI), Government of Maharashtra, India, for awarding the CSMNRF-2022 Research Fellowship. Author Ashwini. B. Salunkhe acknowledge the financial support from UGC-DAE CSR through a collaborative research scheme (CRS) project number CRS/2021–2022/01/444.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by Sagar A. Patil, Tanjila C. Gavandi, Maithili V. Londhe, Ashwini B. Salunkhe, Ashwini K. Jadhav and Vishwajeet M. Khot. The first draft of the manuscript was written by Sagar A. Patil and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Vishwajeet M. Khot.

Ethics declarations

Ethical Approval

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patil, S.A., Gavandi, T.C., Londhe, M.V. et al. Manganese Iron Oxide Nanoparticles for Magnetic Hyperthermia, Antibacterial and ROS Generation Performance. J Clust Sci (2024). https://doi.org/10.1007/s10876-024-02598-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10876-024-02598-w

Keywords

Navigation