Skip to main content
Log in

Unveiling the Influence of Metal Oxides on Multifaceted Polypyrrole Nanocomposite Properties

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

The addition of metals or metal oxides (MOs) into polypyrrole (PPy) could facilitate the effective incorporation of the features of a parent component into novel nanocomposites. As such, this present study used in-situ ultrasonic-assisted chemical oxidative polymerisation (in-situ UA-COP) to synthesise MO-PPy nanocomposites using titanium dioxide (TiO2), zinc oxide (ZnO), and silicone dioxide (SiO2). The impact of MOs on the structural, morphological, thermal and electrical characteristics of the fabricated nanocomposites was then methodically analysed. The nanocomposites’ structural and chemical constitutions were ascertained by way of X-ray diffraction (XRD), and Fourier-transform infrared (FTIR) spectroscopy. The MOs were incorporated via non-covalent bonds into the PPy matrix, without significantly affecting the PPy matrix. Thermogravimetric (TGA) and differential scanning calorimetry (DSC) analyses demonstrated that TiO2-PPy was the most thermally stable, rending it is ideal for use in reactions that require high resistance to temperature. It also had the highest electrical conductivity (2.48 S/cm), which could be attributed to the conductive channels that the MO nanoparticle interconnections formed within the polymer matrix. This in-depth investigation serves to disclose the effect of different MOs on the characteristics of PPy nanocomposites. The findings of this present study also highlight the potential applications of the produced PPy nanocomposites in different fields, especially for use in sensors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

No datasets were generated or analysed during the current study.

References

  1. B. Ali, F. Laffir, L. Kailas, G. Armstrong, L. Kailas, R. O’Connell, and T. McCormac, Eur. J. Inorg. Chem. 2019, 394 (2019).

  2. R. Ragni, A. Punzi, F. Babudri, and G. M. Farinola, European J. Org. Chem. 2018, 3500 (2018).

  3. I. Bameri, J. Saffari, M.-S. Ekrami-Kakhki, and S. Baniyaghoob, J. Clust. Sci. 34, 1819 (2023).

    CAS  Google Scholar 

  4. X. Lu, W. Zhang, C. Wang, T.-C. Wen, and Y. Wei, Prog. Polym. Sci. 36, 671 (2011).

    CAS  Google Scholar 

  5. L. Kratofil Krehula, J. Stjepanović, M. Perlog, S. Krehula, V. Gilja, J. Travas-Sejdic, and Z. Hrnjak-Murgić, Polym. Bull. 76, 1697 (2019).

    CAS  Google Scholar 

  6. A. L. Pang, A. Arsad, and M. Ahmadipour, Polym. Adv. Technol. 32, 1428 (2021).

    CAS  Google Scholar 

  7. K. Arun, S. Sen, K. K. Sunisha, S. Sankar, and M. T. Ramesan, J. Inorg. Organomet. Polym. Mater. (2023).

  8. Z. Zhang, W. Wang, and E. Gao, J. Mater. Sci. 49, 7325 (2014).

    CAS  Google Scholar 

  9. M. R. Miah, M. Yang, S. Khandaker, M. M. Bashar, A. K. D. Alsukaibi, H. M. A. Hassan, H. Znad, and M. R. Awual, Sensors Actuators A Phys. 347, 113933 (2022).

    CAS  Google Scholar 

  10. X. Zhang, Y. Li, W. Zou, L. Ding, and J. Chen, J. Inorg. Organomet. Polym. Mater. (2023).

  11. B. Wu, W. Zhao, L. Hou, T. Zhang, and C. Yang, J. Clust. Sci. 28, 1295 (2017).

    CAS  Google Scholar 

  12. J. Zhong, S. Gao, G. Xue, and B. Wang, Macromolecules 48, 1592 (2015).

    CAS  Google Scholar 

  13. T. Li, P. He, Y. Dong, W. Chen, T. Wang, J. Gong, and W. Chen, Eur. J. Inorg. Chem. 2021, 2063 (2021).

  14. T. Gatti, N. Vicentini, M. Mba, and E. Menna, European J. Org. Chem. 2016, 1071 (2016).

  15. S. T. Navale, G. D. Khuspe, M. A. Chougule, and V. B. Patil, J. Mater. Sci. Mater. Electron. 25, 65 (2014).

    CAS  Google Scholar 

  16. S. R. Nalage, S. T. Navale, and V. B. Patil, Measurement 46, 3268 (2013).

    Google Scholar 

  17. E. Parthiban, N. Kalaivasan, and S. Sudarsan, J. Clust. Sci. 33, 2681 (2022).

    CAS  Google Scholar 

  18. E. Karaca, J. Mater. Sci. Mater. Electron. 34, 1834 (2023).

    CAS  Google Scholar 

  19. M. Joulazadeh and A. H. Navarchian, Synth. Met. 210, 404 (2015).

    CAS  Google Scholar 

  20. S. Ramesh, H. M. Yadav, K. Karuppasamy, D. Vikraman, H.-S. Kim, J.-H. Kim, and H. S. Kim, J. Mater. Res. Technol. 8, 4227 (2019).

    CAS  Google Scholar 

  21. F. Jin, H. Yin, R. Feng, W. Niu, W. Zhang, J. Liu, A. Du, W. Yang, and Z. Liu, J. Colloid Interface Sci. 647, 354 (2023).

    CAS  PubMed  Google Scholar 

  22. A. N. Al-hakimi, F. Alminderej, I. A. Alhagri, S. M. Al-Hazmy, M. O. Farea, and E. M. Abdallah, J. Mater. Sci. Mater. Electron. 34, 238 (2023).

    CAS  Google Scholar 

  23. K. Malook, H. Khan, M. Shah, and Ihsan-Ul-Haque, Korean J. Chem. Eng. 35, 12 (2018).

    CAS  Google Scholar 

  24. H. Khan, K. Malook, and M. Shah, J. Mater. Sci. Mater. Electron. 29, 9090 (2018).

    CAS  Google Scholar 

  25. K. Yamani, R. Berenguer, A. Benyoucef, and E. Morallón, J. Therm. Anal. Calorim. 135, 2089 (2019).

    CAS  Google Scholar 

  26. A. Manickavasagan, R. Ramachandran, S.-M. Chen, and M. Velluchamy, Ultrason. Sonochem. 64, 104913 (2020).

    CAS  PubMed  Google Scholar 

  27. X. Zheng, M. E. Ali Mohsin, A. Arsad, and A. Hassan, J. Appl. Polym. Sci. 138, 50637 (2021).

    CAS  Google Scholar 

  28. V. Balakumar and A. Baishnisha, Surfaces and Interfaces 23, 100958 (2021).

    CAS  Google Scholar 

  29. Y. Zhang, S. Zhang, X. Yang, W. Wang, X. Liu, H. Wang, and H. Zhang, J. Cereal Sci. 106, 103500 (2022).

    CAS  Google Scholar 

  30. H. Vijeth, S. P. A. Kumar, L. Yesappa, M. Niranjana, M. Vandana, and H. Devendrappa, AIP Conf. Proc. 2142, 150029 (2019).

  31. J. Jang and H. Yoon, Langmuir 21, 11484 (2005).

    CAS  PubMed  Google Scholar 

  32. W. Wang, X. Ma, D. Sun, X. Qi, J. Yang, and Y. Wang, Compos. Part A Appl. Sci. Manuf. 128, 105671 (2020).

    CAS  Google Scholar 

  33. S. Dey and A. K. Kar, J. Sol-Gel Sci. Technol. 102, 679 (2022).

    CAS  Google Scholar 

  34. D. Muller, G. K. Pinheiro, T. Bendo, A. J. Gutiérrez Aguayo, G. M. O. Barra, and C. R. Rambo, J. Nanomater. 2015, 658476 (2015).

  35. J. Sun, Z. Xu, W. Li, and X. Shen, Nanomaterials 7, (2017).

  36. A. F. A. Rahman, A. A. Jalil, S. Triwahyono, A. Ripin, F. F. A. Aziz, N. A. A. Fatah, N. F. Jaafar, C. N. C. Hitam, N. F. M. Salleh, and N. S. Hassan, J. Clean. Prod. 143, 948 (2017).

    CAS  Google Scholar 

  37. A. L. Khan and R. Jain, Ionics (Kiel). 24, 2473 (2018).

    CAS  Google Scholar 

  38. A. Kausar, I. Ahmad, T. Zhao, O. Aldaghri, K. H. Ibnaouf, and M. H. Eisa, Crystals 13, (2023).

  39. R. Zhang, L. Lu, Y. Chang, and M. Liu, J. Hazard. Mater. 429, 128321 (2022).

    CAS  PubMed  Google Scholar 

  40. Y. Xiao, L. Lu, A. Zhang, Y. Zhang, L. Sun, L. Huo, and F. Li, ACS Appl. Mater. Interfaces 4, 3797 (2012).

    CAS  PubMed  Google Scholar 

  41. S. K. S. Hossain, A. F. Rahman, A. Arsad, A. Basu, A. L. Pang, Z. Harun, M. M. Alwi, and S. S. Ali, Polymers (Basel). 15, (2023).

  42. R. Turczyn, K. Krukiewicz, A. Katunin, J. Sroka, and P. Sul, Compos. Struct. 232, 111498 (2020).

    Google Scholar 

  43. R. Gunasekaran, J. Charles, and S. P. Kumar, J. Inorg. Organomet. Polym. Mater. 33, 2445 (2023).

    CAS  Google Scholar 

  44. M. T. Byrne and Y. K. Gun’ko, Adv. Mater. 22, 1672 (2010).

    CAS  PubMed  Google Scholar 

  45. L. Zhang, Y. Lv, X. Ye, L. Ma, S. Chen, Y. Wu, and Q. Wang, Materials (Basel). 15, (2022).

  46. D. Qi, F. Gao, Z. Chen, Z. Cui, G. Wang, N. Wang, Y. Zhang, G. Qu, and Z. Cao, Colloids Surfaces A Physicochem. Eng. Asp. 523, 106 (2017).

    CAS  Google Scholar 

  47. A. Singh, D. Poddar, S. Thakur, and R. Jha, Mater. Chem. Phys. 273, 125043 (2021).

    CAS  Google Scholar 

  48. N. M. Bahari, S. N. Che Mohamed Hussein, and N. H. Othman, Part. Sci. Technol. 39, 844 (2021).

    CAS  Google Scholar 

  49. J. Liu, F. Zeng, M. Liu, J. He, Q. Li, F. Song, Z. Hong, Y. Chen, L. Bai, C. Cheng, and Z. Chen, Int. J. Energy Res. 46, 19480 (2022).

    CAS  Google Scholar 

  50. M. Maruthapandi, A. P. Nagvenkar, I. Perelshtein, and A. Gedanken, ACS Appl. Polym. Mater. 1, 1181 (2019).

    CAS  Google Scholar 

  51. Y. Liu, T. Liu, X. Liu, L. Xu, B. Liu, and M. Zhang, Colloids Surfaces A Physicochem. Eng. Asp. 656, 130378 (2023).

    CAS  Google Scholar 

  52. H. M. El-Bery, M. R. Salah, S. M. Ahmed, and S. A. Soliman, RSC Adv. 11, 13229 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. S. Demirel and İ. E. Çimlek, Polym. Bull. 80, 2585 (2023).

    CAS  Google Scholar 

  54. A. Kumar and S. Sarmah, Phys. Status Solidi 208, 2203 (2011).

    CAS  Google Scholar 

  55. M. T. Ramesan, V. Santhi, B. K. Bahuleyan, and M. A. Al-Maghrabi, Mater. Chem. Phys. 211, 343 (2018).

    CAS  Google Scholar 

  56. M. T. Ramesan and T. Sampreeth, J. Mater. Sci. Mater. Electron. 28, 16181 (2017).

    CAS  Google Scholar 

  57. L. Geng, Y. Zhao, X. Huang, S. Wang, S. Zhang, W. Huang, and S. Wu, Synth. Met. 156, 1078 (2006).

    CAS  Google Scholar 

  58. D. M. Jundale, S. T. Navale, G. D. Khuspe, D. S. Dalavi, P. S. Patil, and V. B. Patil, J. Mater. Sci. Mater. Electron. 24, 3526 (2013).

    CAS  Google Scholar 

  59. K. Dutta and S. K. De, Solid State Commun. 140, 167 (2006).

    CAS  Google Scholar 

  60. D. K. Bandgar, S. T. Navale, S. A. Vanalkar, J. H. Kim, N. S. Harale, P. S. Patil, and V. B. Patil, Synth. Met. 195, 350 (2014).

    CAS  Google Scholar 

  61. G. D. Khuspe, S. T. Navale, M. A. Chougule, and V. B. Patil, Synth. Met. 185–186, 1 (2013).

    Google Scholar 

  62. A. Yamakata and J. J. M. Vequizo, J. Photochem. Photobiol. C Photochem. Rev. 40, 234 (2019).

    CAS  Google Scholar 

  63. M. Sakar, R. Mithun Prakash, and T.-O. Do, Catalysts 9, (2019).

  64. A. Anand, N. Rani, P. Saxena, H. Bhandari, and S. K. Dhawan, Polym. Int. 64, 1096 (2015).

    CAS  Google Scholar 

  65. V. T. H. Van, T. T. X. Hang, P. T. Nam, N. T. Phuong, N. T. Thom, D. Devilliers, and D. T. M. Thanh, J. Nanosci. Nanotechnol. 18, 4189 (2018).

    CAS  PubMed  Google Scholar 

  66. S. Krishnaswamy, P. Panigrahi, S. K. S., and G. S. Nagarajan, Nano-Structures & Nano-Objects 22, 100446 (2020).

    CAS  Google Scholar 

  67. K. Manna and S. K. Srivastava, Langmuir 36, 4519 (2020).

    CAS  PubMed  Google Scholar 

  68. Z. Chen, W. Yang, B. Xu, Y. Chen, M. Qian, X. Su, Z. Li, X. Yin, and Y. Liu, J. Alloys Compd. 771, 857 (2019).

    CAS  Google Scholar 

  69. M. R. Husin, A. Arsad, A. Hassan, and O. Hassan, Appl. Mech. Mater. 618, 50 (2014).

    Google Scholar 

  70. M. R. Ardani, A. L. Pang, U. Pal, R. Zheng, A. Arsad, A. A. Hamzah, and M. Ahmadipour, J. Water Process Eng. 46, 102557 (2022).

    Google Scholar 

  71. X. Wang, Y. Yang, Z. Zheng, L. Fu, B. Lin, C. Xu, and Y. Chen, Compos. Part B Eng. 255, 110645 (2023).

    CAS  Google Scholar 

  72. H. Souri, H. Banerjee, A. Jusufi, N. Radacsi, A. A. Stokes, I. Park, M. Sitti, and M. Amjadi, Adv. Intell. Syst. 2, 2000039 (2020).

    Google Scholar 

Download references

Acknowledgements

The authors are grateful for the financial support from Universiti Teknologi Malaysia through Professional Development Research University grant (Q.J130000.21A2.06E78).

Author information

Authors and Affiliations

Authors

Contributions

AFAR: Conceptualization, Methodology, Investigation, Data Curation, Formal Analysis, Writing - Original Draft, Visualization. AA: Conceptualization, Supervision, Validation, Resources, Writing - Review & Editing, Supervision, Funding AcquisitionLYW: Methodology, Visualization, InvestigationALP: Data Curation, Validation, Writing - Review & EditingSRS: Resources, Project Administration, Formal Analysis.

Corresponding author

Correspondence to Agus Arsad.

Ethics declarations

Ethical Approval

The manuscript does not include the study of human/animal. The declaration is not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahman, A.F.A., Arsad, A., Wei, L.Y. et al. Unveiling the Influence of Metal Oxides on Multifaceted Polypyrrole Nanocomposite Properties. J Clust Sci 35, 1381–1388 (2024). https://doi.org/10.1007/s10876-024-02597-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-024-02597-x

Keywords

Navigation