Skip to main content

Advertisement

Log in

Benzothiazole-Derived Covalent Organic Framework for Multimedia Iodine Uptake

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

Nuclear energy holds the chief portion of the global primary energy mix that comes with the major issue of releasing volatile nuclear wastes viz. radioiodine (129I and 131I) into air and water bodies during nuclear fuel reprocessing. The efficient capture of volatile radioiodine has attracted a major attention worldwide due to the severe health and environment effects. Among various porous materials, covalent organic frameworks (COFs) are the intriguing class of porous organic materials with crystallinity, synthetically pre-designable functionalities to achieve tunable properties. Herein, a new benzothiazole based COF (COF-3) obtained by the condensation of 2,6-dimainobenzothiazole and 2,4,6-triformylpholoroglucinol is reported with tetragonal pore topology (pore volume = 0.305 cc g−1; BET surface area = 57.9 m2 g−1). The electron rich heteroatoms in the frameworks play a crucial role in adsorbing electron deficient iodine molecules and therefore, the benzothiazole-derived COF is envisioned to be potent material for efficient iodine adsorption. The synthesized COF showed the iodine adsorption capacity of 1.07 g g−1 in vapor phase and 109.0 mg g−1 from n-hexane solution. A reference COF (COF-4) with no thiazole group derived from 1,4-phenylenediamine and 2,4,6-triformylpholoroglucinol with hexagonal pore topology (pore volume = 0.937 cc g−1) and BET surface area 133.9 m2 g−1 showed adsorption of iodine from n-hexane solution with capacity 149.5 mg g−1. The study revealed that although the presence of heteroatoms in the framework facilitates the iodine adsorption by converting the molecular iodine into the polyiodides; the factors such as BET surface area, pore topology and pore volume also play a major role in the adsorption of iodine molecules.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Data Availability

The data that supports the findings of this study are available on request from the corresponding author.

References

  1. British Petroleum Statistical Review of World Energy (2021), 70th Ed

  2. British Petroleum Statistical Review of World Energy (2022), 71st Ed

  3. K. Vellingiri, K. H. Kim, A. Pournara, and A. Deep (2018). Prog. Mater. Sci. 94, 1–67. https://doi.org/10.1016/j.pmatsci.2018.01.002.

    Article  CAS  Google Scholar 

  4. Z. J. Yan, Y. Yuan, Y. Y. Tian, D. Zhang, and G. S. Zhu (2015). Angew. Chem. Int. Ed. 54, 12733–12737. https://doi.org/10.1002/anie.201503362.

    Article  CAS  Google Scholar 

  5. Y. Li, Y. Li, Q. Zhao, L. Li, R. Chen, and C. He (2019). Cellulose 27, 1517–1529. https://doi.org/10.1007/s10570-019-02877-0.

    Article  CAS  Google Scholar 

  6. S. Xu, S. P. Freeman, X. Hou, A. Watanabe, K. Yamaguchi, and L. Zhang (2013). Environ. Sci. Technol. 47, 10851–10859. https://doi.org/10.1021/es401527q.

    Article  CAS  PubMed  ADS  Google Scholar 

  7. S. U. Nandanwar, K. Coldsnow, V. Utgikar, P. Sabharwall, and D. E. Aston (2016). Chem. Eng. J. 306, 369–381. https://doi.org/10.1016/j.cej.2016.07.073.

    Article  CAS  Google Scholar 

  8. K. Munakata, S. Kanjo, S. Yamatsuki, A. Koga, and D. Ianovski (2003). J. Nucl. Sci. Technol. 40, 695–697.

    Article  CAS  Google Scholar 

  9. K. W. Chapman, P. J. Chupas, and T. M. Nenoff (2010). J. Am. Chem. Soc. 132, 8897–8899. https://doi.org/10.1021/ja103110y.

    Article  CAS  PubMed  Google Scholar 

  10. B. J. Riley, J. D. Vienna, D. M. Strachan, J. S. McCloy, and J. L. Jerden Jr. (2016). J. Nucl. Mater. 470, 307–326. https://doi.org/10.1016/j.jnucmat.2015.11.038.

    Article  CAS  ADS  Google Scholar 

  11. T. H. Niu, C. C. Feng, C. Yao, W. Y. Yang, and Y. H. Xu (2020). ACS Appl. Polym. Mater. 3, 354–361. https://doi.org/10.1021/acsapm.0c01136.

    Article  CAS  Google Scholar 

  12. M. Xu, T. Wang, L. Zhou, and D. Hua (2020). J. Mater. Chem. A 8, 1966–1974. https://doi.org/10.1039/C9TA11446G.

    Article  CAS  Google Scholar 

  13. L. He, L. Chen, X. Dong, S. Zhang, M. Zhang, X. Dai, X. Liu, P. Lin, K. Li, C. Chen, T. Pan, F. Ma, J. Chen, M. Yuan, Y. Zhang, L. Chen, R. Zhou, Y. Han, Z. Chai, and S. Wang (2021). Chem. 7, 699–714. https://doi.org/10.1016/j.chempr.2020.11.024.

    Article  CAS  Google Scholar 

  14. P. Wang, Q. Xu, Z. Li, W. Jiang, Q. Jiang, and D. Jiang (2018). Adv. Mater. 30, 1801991. https://doi.org/10.1002/adma.201801991.

    Article  CAS  Google Scholar 

  15. X. Jiang, X. Cui, A. J. E. Duncan, L. Li, R. P. Hughes, R. J. Staples, E. V. Alexandrov, D. M. Proserpio, Y. Wu, and C. Ke (2019). J. Am. Chem. Soc. 141, 10915–10923. https://doi.org/10.1021/jacs.9b05232.

    Article  CAS  PubMed  Google Scholar 

  16. T. Geng, Z. Zhu, X. Wang, H. Xia, Y. Wang, and D. Li (2018). Sens. Actuators B Chem. 265, 85–91. https://doi.org/10.1016/j.snb.2017.01.005.

    Article  CAS  Google Scholar 

  17. Y. Xie, T. Pan, Q. Lei, C. Chen, X. Dong, Y. Yuan, J. Shen, Y. Cai, C. Zhou, I. Pinnau, and Y. Han (2021). Angew. Chem. Int. Ed. 60, 22432–22440. https://doi.org/10.1002/anie.202108522.

    Article  CAS  Google Scholar 

  18. M. Wilkinson, A. Mondino, and A. Manzini (2003). J. Radioanal. Nucl. Chem. 256, 413–415. https://doi.org/10.1023/A:1024583212400.

    Article  CAS  Google Scholar 

  19. B. J. Riley, S. Chong, M. J. Olszta, and J. A. Peterson (2020). ACS Appl. Mater. Interfaces. 12, 19682–19692. https://doi.org/10.1021/acsami.0c03155.

    Article  CAS  PubMed  Google Scholar 

  20. B. J. Riley, J. Chun, W. Um, W. C. Lepry, J. Matyas, M. J. Olszta, and X. Li (2013). Environ. Sci. Technol. 47, 7540–7547. https://doi.org/10.1021/es400595z.

    Article  CAS  PubMed  ADS  Google Scholar 

  21. B. J. Riley, D. A. Pierce, J. Chun, J. Matyáš, W. C. Lepry, T. G. Garn, J. D. Law, and M. G. Kanatzidis (2014). Environ. Sci. Technol. 48, 5832–5839. https://doi.org/10.1021/es405807w.

    Article  CAS  PubMed  ADS  Google Scholar 

  22. S. Tang, S. Choi, Y. Nan, and L. L. Tavlarides (2021). AIChE J. 67, e17137. https://doi.org/10.1002/aic.17137.

    Article  CAS  ADS  Google Scholar 

  23. M. Janeta, W. Bury, and S. Szafert (2018). ACS Appl. Mater. Interfaces. 10, 19964–19973. https://doi.org/10.1021/acsami.8b03023.

    Article  CAS  PubMed  Google Scholar 

  24. S. Park, H. An, M. B. Park, and J. Lee (2020). Microporous Mesoporous Mater. 294, 109842–109847. https://doi.org/10.1016/j.micromeso.2019.109842.

    Article  CAS  Google Scholar 

  25. R. Liu, W. Zhang, Y. T. Chen, Y. R. Fan, G. Z. Hu, C. Xu, and Z. Han (2020). J. Inorg. Mater. 35, 345–351. https://doi.org/10.15541/jim20190351.

    Article  Google Scholar 

  26. J. T. Hughes, D. F. Sava, T. M. Nenoff, and A. Navrotsky (2013). J. Am. Chem. Soc. 135, 16256–16259. https://doi.org/10.1021/ja406081r.

    Article  CAS  PubMed  Google Scholar 

  27. Q. Yu, X. H. Jiang, Z. J. Cheng, Y. W. Liao, and M. Duan (2021). RSC Adv. 11, 30259–30269. https://doi.org/10.1039/d1ra05223c.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  28. V. V. Butova, V. A. Polyakov, E. A. Erofeeva, I. S. Yahia, H. Y. Zahran, A. F. Abd El-Rehim, A. M. Aboraia, and A. V. Soldatov (2020). Inorg. Chim. Acta 509, 119678. https://doi.org/10.1016/j.ica.2020.119678.

    Article  CAS  Google Scholar 

  29. Y. R. Lee, X. H. Do, K. Y. Cho, K. Jeong, and K. Y. Baek (2020). ACS Appl. Nano Mater. 3, 9852–9861. https://doi.org/10.1021/acsanm.0c01914.

    Article  CAS  Google Scholar 

  30. B. Valizadeh, T. N. Nguyen, B. Smit, and K. C. Stylianou (2018). Adv. Funct. Mater. 28, 1801596. https://doi.org/10.1002/adfm.201801596.

    Article  CAS  Google Scholar 

  31. D. Banerjee, X. Chen, S. S. Lobanov, A. M. Plonka, X. Chan, J. A. Daly, T. Kim, P. K. Thallapally, and J. B. Parise (2018). ACS Appl. Mater. Interfaces. 10, 10622–10626. https://doi.org/10.1021/acsami.8b02651.

    Article  CAS  PubMed  Google Scholar 

  32. R. Jaryal, R. Kumar, and S. Khullar (2022). Coord. Chem. Rev. 464, 214542. https://doi.org/10.1016/j.ccr.2022.214542.

    Article  CAS  Google Scholar 

  33. M. Chebbi, B. Azambre, C. Volkringer, and T. Loiseau (2018). Microporous Mesoporous Mater. 259, 244–254. https://doi.org/10.1016/j.micromeso.2017.10.018.

    Article  CAS  Google Scholar 

  34. K. W. Chapman, D. F. Sava, G. J. Halder, P. J. Chupas, and T. M. Nenoff (2011). J. Am. Chem. Soc. 133, 18583–18585. https://doi.org/10.1021/ja2085096.

    Article  CAS  PubMed  Google Scholar 

  35. T. D. Bennett, P. J. Saines, D. A. Keen, J. C. Tan, and A. K. Cheetham (2013). Chem. Eur. J. 19, 7049–7055. https://doi.org/10.1002/chem.201300216.

    Article  CAS  PubMed  Google Scholar 

  36. L. J. Small, R. C. Hill, J. L. Krumhansl, M. E. Schindelholz, Z. H. Y. Chen, K. W. Chapman, X. R. Zhang, S. H. Yang, M. Schroder, and T. M. Nenoff (2019). ACS Appl. Mater. Interfaces. 11, 27982–27988. https://doi.org/10.1021/acsami.9b09938.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. K. Geng, T. He, R. Liu, S. Dalapati, K. Tian Tan, Z. Li, S. Tao, Y. Gong, Q. Jiang, and D. Jiang (2020). Chem. Soc. Rev. 120, 8814–8933. https://doi.org/10.1039/C2CS35157A.

    Article  CAS  Google Scholar 

  38. A. P. Côté, A. I. Benin, N. W. Ockwig, M. O’Keeffe, A. J. Matzger, and O. M. Yaghi (2005). Science 310, 1166–1170. https://doi.org/10.1126/science.1120411.

    Article  CAS  PubMed  ADS  Google Scholar 

  39. T. F. Machado, M. Elisa, S. Serra, D. Murtinho, A. J. M. Valente, and M. Naushad (2021). Polymers 13, 970. https://doi.org/10.3390/polym13060970.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. X. Feng, X. Ding, and D. Jiang (2012). Chem. Soc. Rev. 41, 6010–6022. https://doi.org/10.1039/C2CS35157A.

    Article  CAS  PubMed  Google Scholar 

  41. R. Jaryal, S. Khullar, and R. Kumar (2022). Mater. Today: Proc. 78, 885–890. https://doi.org/10.1016/j.matpr.2022.12.093.

    Article  CAS  Google Scholar 

  42. S. Y. Ding and W. Wang (2013). Chem. Soc. Rev. 42, 548–568. https://doi.org/10.1039/C2CS35072F.

    Article  CAS  PubMed  Google Scholar 

  43. J. Xiao, J. Chen, J. Liu, H. Ihara, and H. Qiu (2022). Green Energy Environ. https://doi.org/10.1016/j.gee.2022.05.003.

    Article  Google Scholar 

  44. R. Jaryal, R. Kumar, and S. Khullar, Metal- and carbon-based nano-frameworks as catalysts for supercapacitance and fuel industry, in U. Shanker, C. M. Hussain, and M. Rani (eds.), Handbook of green and sustainable nanotechnology: fundamentals, developments and applications (Springer, Cham, 2023).

    Google Scholar 

  45. N. Huang, P. Wang, and D. Jiang (2016). Nat. Rev. Mater. 1, 16068. https://doi.org/10.1038/natrevmats.2016.68.

    Article  CAS  ADS  Google Scholar 

  46. Z. J. Yin, S. Q. Xu, T. G. Zhan, Q. Y. Qi, Z. Q. Wu, and X. Zhao (2017). Chem. Comm. 53, 7266–7269. https://doi.org/10.1039/C7CC01045A.

    Article  CAS  PubMed  Google Scholar 

  47. Y. Yang, C. Tu, H. Yin, J. Liu, F. Cheng, and F. Luo (2022). Molecules. 27, 9045. https://doi.org/10.3390/molecules27249045.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. X. Guo, Y. Li, M. Zhang, K. Cao, Y. Tian, Y. Qi, S. Li, K. Li, X. Yu, and L. Ma (2020). Angew. Chem. Int. Ed. 132, 22886–22894. https://doi.org/10.1002/anie.202010829.

    Article  CAS  ADS  Google Scholar 

  49. C. Wang, Y. Wang, R. L. Ge, X. D. Song, X. Q. Xing, Q. K. Jiang, H. Lu, C. Hao, X. W. Guo, Y. A. Gao, and D. L. Jiang (2018). Chem. Eur. J. 24, 585–589. https://doi.org/10.1002/chem.201705405.

    Article  CAS  PubMed  Google Scholar 

  50. Y. B. Zhang, L. M. Li, M. G. Wang, and Z. Y. Duan (2021). Heterocycles 102, 1395–1401. https://doi.org/10.3987/COM-21-14463.

    Article  CAS  Google Scholar 

  51. J. H. Zhang, J. C. Liu, Y. Z. Liu, Y. J. Wang, Q. R. Fang, and S. L. Qiu (2022). Chem. Res. Chin. Univ. 38, 456–460. https://doi.org/10.1007/s40242-022-1513-3.

    Article  CAS  Google Scholar 

  52. G. J. Xu, J. H. Chang, and Q. R. Fang (2020). Chem. J. Chin. Univ. 41, 2667–2672. https://doi.org/10.7503/cjcu20200624.

    Article  CAS  Google Scholar 

  53. Y. Li, X. G. Li, J. F. Li, W. Liu, G. E. Cheng, and H. Z. Ke (2021). Microporous Mesoporous Mater. 325, 111351. https://doi.org/10.1016/j.micromeso.2021.111351.

    Article  CAS  ADS  Google Scholar 

  54. Z. L. Wen, S. L. Wang, S. Y. Fu, J. Y. Qian, Q. Q. Yan, H. J. Xu, K. M. Zuo, X. F. Su, C. Y. Zeng, and Y. A. Gao (2022). Chem. Res. Chin. Univ. 38, 472–477. https://doi.org/10.1007/s40242-022-2057-2.

    Article  CAS  Google Scholar 

  55. R. Chen, T. L. Hu, W. Zhang, C. Y. He, and Y. Q. Li (2021). Microporous Mesoporous Mater. 312, 110739. https://doi.org/10.1016/j.micromeso.2020.110739.

    Article  CAS  Google Scholar 

  56. S. Song, Y. Shi, N. Liu, and F. Liu (2021). RSC Adv. 11, 10512–10523. https://doi.org/10.1039/D0RA10587B.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  57. Y. Yang, X. Xiong, Y. Fan, Z. Lai, Z. Xu, and F. Luo (2019). J. Solid State Chem. 279, 120979. https://doi.org/10.1016/j.jssc.2019.120979.

    Article  CAS  Google Scholar 

  58. S. Kandambeth, A. Mallick, B. Lukose, M. V. Mane, T. Heine, and R. Banerjee (2012). J. Am. Chem. Soc. 134, 19524–19527. https://doi.org/10.1021/ja308278w.

    Article  CAS  PubMed  Google Scholar 

  59. C. R. DeBlase, K. E. Silberstein, T.-T. Truong, H. D. Abrun, and W. R. Dichtel (2013). J. Am. Chem. Soc. 135, 16821–16824. https://doi.org/10.1021/ja409421d.

    Article  CAS  PubMed  Google Scholar 

  60. S. H. M. Mehr, B. O. Patrick, and M. J. MacLachlan (2016). Org. Lett. 18, 1840–1843. https://doi.org/10.1021/acs.orglett.6b00577.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Ms. Ritika Jaryal is thankful to Ministry of Education for providing fellowship assistantship. Authors are thankful to Dr. Hitesh Sharma (PTU Jalandhar, India) for his help with Material Studio Suite for simulations and modeling.

Funding

RJ thanks Ministry of Education, Govt. of India for the research scholarship. Funds for this research were provided by Dr B R Ambedkar National Institute of Technology Jalandhar. No other external funding was available for this research work.

Author information

Authors and Affiliations

Authors

Contributions

SK and RK designed and conceptualized the research work. RJ carried out the experimental work and characterization of materials. All the authors compiled and finalized the manuscript.

Corresponding authors

Correspondence to Sadhika Khullar or Rakesh Kumar.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests.

Ethical Approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

10876_2023_2495_MOESM1_ESM.docx

Supplementary material is available at the journal’s website. Supplementary Information contains the 1H-NMR spectra of the synthesized monomers (Figs. S1–S3), Schematic procedure for the synthesis of COF (Scheme S1), Elemental analysis of COF-3 and COF-4 (Table S1),13C CP-MAS solid-state NMR spectra of COFs (Figs. S4, S5), HR-TEM images of COFs (Fig. S6), TGA scans of COFs (Fig. S7), IR Spectra of COF-3 and COF-4 after acid (1N HCl) and base (1N NaOH) treatment (Figs. S8, S9), PXRD of COF-3 and COF-4 after acid (1N HCl) and base (1N NaOH) treatment (S10), XPS spectra of COFs (Fig. S11). Reported COFs for iodine adsorption in vapor and/or solution phase (Table S2), References. Supplementary file1 (DOCX 2365 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jaryal, R., Khullar, S. & Kumar, R. Benzothiazole-Derived Covalent Organic Framework for Multimedia Iodine Uptake. J Clust Sci 35, 461–479 (2024). https://doi.org/10.1007/s10876-023-02495-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-023-02495-8

Keywords

Navigation