Abstract
The rare earth metal doped Si-based semiconductor clusters have aroused increased attention in a lot of fields. Here, the structural evolution, magnetic and spectral properties of bimetallic Eu2 doped silicon-based clusters, Eu2Sin− (1 ≤ n ≤ 12), have been investigated using artificial bees colony and Saunders “Kick” global optimization techniques associated with density-functional theory calculations. The calculations show that the two Eu atoms prefer to occupy the surface position of parent silicon clusters and form exohedral geometric structures. It is found that the structural growth pattern is reflected at n = 4–8 where the two Eu atoms lie on the framework of distorted pentagon. Eu2Si5− is determined to the most stable cluster owing to the strong interaction between host Si atoms and dual Eu atoms. The natural atomic orbital method reveals that the charges always transfer from the Eu to Si parent atoms. Interestingly, the total magnetic moments are not quenched but superimposed together with introduction into Si-based cluster, 4f electrons almost remain in two Eu atoms and hardly participate in the molecular Si–Eu bonding. Moreover, theoretical photoelectron spectra are predicted in order to provide a theoretical guidance for the future photoelectron spectroscopy experiments of double rare earth metal doped Si-based semiconductor clusters.
Similar content being viewed by others
Data Availability
All data generated or analysed during this study are included in this article (and its supplementary information files).
References
C. Lu, W. G. Gong, Q. Li, C. F. Chen, Elucidating stress-strain relations of ZrB12 from first-principles studies, J. Phys. Chem. Lett. 11, 9165 (2020)
Y. W. Fan, H. Q. Wang, H. F. Li, Microsolvation of Co– in water: Density functional theory calculations coupled with stochastic kicking method, Spectrochim. Acta A 245, 118935 (2021)
Q. Duan, J. Shen, X. Zhong, H. Lu, C. Lu, Structural phase transition and superconductivity of ytterbium under high pressure, Phys. Rev. B 105, 214503 (2022)
A. Tekin, B. Hartke, Global geometry optimization of small silicon clusters with empirical potentials and at the dft level, Phys. Chem. Chem. Phys. 6, 503 (2004)
J. T. Lyon, P. Gruene, A. Fielicke, G. Meijer, E. Janssens, P. Claes, P. Lievens, Structures of silicon cluster cations in the gas phase, J. Am. Chem. Soc. 131, 1115 (2009)
C. Lu, X. Y. Kuang, Z. W. Lu, A. J. Mao, Y. M. Ma, Determination of structures, stabilities, and electronic properties for bimetallic cesium-doped gold clusters: a density functional theory study, J. Phys. Chem. A 115, 9273 (2011)
Y. Chen, J. J. Deng, W. W. Yao, J. I. Gurti, W. Li, W. J. Wang, J. X. Yao, X. L. Ding, Non-stoichiometric molybdenum sulfide clusters and their reactions with the hydrogen molecule, Phys. Chem. Chem. Phys. 23, 347 (2021)
D. Die, B. X. Zheng, J. Y. Yue, J. J. Guo, Q. Du, The ground-state structure, optical-absorption and photoelectron spectrum of silver clusters, Physica E. 117, 113805 (2020)
Y. Y. Wang, X. L. Ding, Y. Chen, M. M. Wang, W. Li and X. Wang, Trimetallic clusters in the sumanene bowl for dinitrogen activation, Phys. Chem. Chem. Phys. 24, 23265 (2022)
X. Y. Shen, D. Die, J. P. Yang, J. J. Guo, The ground state structures and spectra of Ag20 clusters and the adsorption to carbon monoxide, Mater. Chem. Phys. 273, 125134 (2021)
B. X. Li, P. L. Cao, Water adsorption on Si8 – 10 clusters: a full-potential linearmuffin-tin-orbital molecular-dynamics study, J. Phys.: Condens. Mat. 13, 1 (2001)
M. Ishimaru, Molecular-dynamics study on atomistic structures of amorphous silicon, J. Phys.: Condes. Mat. 13, 4181 (2001)
B. X. Li, P. L. Cao, S. C. Zhan, Ground state structures of Sin (n = 11–25) clusters, Phys. Lett. A 316, 252 (2003)
J. Bai, L. F. Cui, J. Wang, S. Yoo, X. Li, J. Jellinek, C. Koehler, T. Frauenheim, L. S. Wang, X. C. Zeng, Structural evolution of anionic silicon clusters SiN (20 ≤ N ≤ 45), J. Phys. Chem. A 110, 908 (2006)
A. Fielicke, J. T. Lyon, M. Haertelt, G. Meijer, P. Claes, J. de. Haeck, P. Lievens, Vibrational spectroscopy of neutral silicon clusters via far-IR-VUV two color ionization, J. Chem. Phys. 131, 171105 (2009)
W. Qin, W. C. Lu, L. Z. Zhao, Q. J. Zang, Stabilities and fragmentation energies of Sin clusters (n = 2–33), J. Phys.: Condens. Mat. 21, 455501 (2009)
S. M. Aguilera-Segura, J. M. Seminario, Ab initio analysis of silicon nano-clusters, J. Phys. Chem. C 118, 1397 (2014)
L. Z. Zhao, W. C. Lu, W. Qin, Q. J. Zang, K. M. Ho, C. Z. Wang, Theoretical prediction of Si2-Si33 absorption spectra, J. Phys. Chem. A 121, 6388 (2017)
R. Q. Zhang, M. W. Zhao, S. T. Lee, Silicon monoxide clusters: the favorable precursors for forming silicon nanostructures, Phys. Rev. Lett. 93, 095503 (2004)
P. De Padova, Quaresima, C. B. Olivieri, P. Perfetti, G. Le Lay, Sp2-like hybridization of silicon valence orbitals in silicene nanoribbons, Appl. Phys. Lett. 98, 081909 (2011)
S. M. Beck, Studies of silicon cluster-metal atom compound formation in a supersonic molecular beam, J. Chem. Phys. 87, 4233 (1987)
S. M. Beck, Mixed metal-silicon clusters formed by chemical reaction in a supersonic molecular beam: implications for reactions at the metal/silicon interface, J. Chem. Phys. 90, 6306 (1989)
H. Hiura, T. Miyazaki, T. Kanayama, Formation of metal-encapsulating Si cage clusters, Phys. Rev. Lett. 86, 1733 (2001)
V. Kumar, Y. Kawazoe, Magic behavior of Si15M and Si16M (M = Cr, Mo, and W) clusters, Phys. Rev. B 65, 073404 (2002)
M. Ohara, K. Koyasu, A. Nakajima, K. Kaya, Geometric and electronic structures of metal (M)-doped silicon clusters (M = Ti, Hf, Mo and W), Chem. Phys. Lett. 371, 490 (2003)
J. U. Reveles, S. N. Khanna, Nearly-free-electron gas in a silicon cage, Phys. Rev. B 72, 165413 (2005)
K. Koyasu, M. Akutsu, M. Mitsui, A. Nakajima, Selective formation of MSi16 (M = Sc, Ti, and V), J. Am. Chem. Soc. 127, 4998 (2005)
L. J. Guo, G. F. Zhao, Y. Z. Gu, X. Liu, Z. Zeng, Density functional investigation of metal-silicon cage clusters MSin (M = Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn; n = 8–16), Phys. Rev. B 77, 195417 (2008)
D. Palagin, M. Gramzow, K. Reuter, On the stability of “nonmagic” endohedrally doped si clusters: a first-principles sampling study of MSi16+ (M = Ti, V, Cr), J. Chem. Phys. 134, 244705 (2011)
H. Kawamura, V. Kumar, Y. Kawazoe, Growth behavior of metal-doped silicon clusters SinM (M = Ti, Zr, Hf; n = 8–16), Phys. Rev. B 71, 075423 (2005)
J. Wang, J. Zhao, L. Ma, B. Wang, G. Wang, Structure and magnetic properties of cobalt doped Sin (n = 2–14) clusters, Phys. Lett. A 367, 335 (2007)
G. Mpourmpakis, G. E. Froudakis, A. N. Andriotis, M. Menon, Fe encapsulation by silicon clusters: ab initio electronic structure calculations, Phys. Rev. B 68, 125407 (2003)
V. Kumar, Alchemy at the nanoscale: magic heteroatom clusters and assemblies, Comput. Mater. Sci. 36, 1 (2006)
A. N. Andriotis, G. Mpourmpakis, G. E. Froudakis, M. Menon, Magnetic enhancement and magnetic reduction in binary clusters of transition metal atoms, J. Chem. Phys. 120, 11901 (2004)
J. R. Li, G. H. Wang, C. H. Yao, Y. W. Mu, J. G. Wan, M. Han, Structures and magnetic properties of SinMn (n = 1–15) clusters, J. Chem. Phys. 130, 164514 (2009)
X. Kong, H. G. Xu, W. Zheng, Structures and magnetic properties of CrSin– (n = 3–12) clusters: photoelectron spectroscopy and density functional calculations, J. Chem. Phys. 137, 064307 (2012)
L. Ma, J. Zhao, J. Wang, B. Wang, Q. Lu, G. Wang, Growth behavior and magnetic properties of SinFe (n = 2–14) clusters, Phys. Rev. B 73, 125439 (2006)
X. Huang, H. G. Xu, S. Lu, Y. Su, R. King, J. Zhao, W. Zheng, Discovery of a silicon-based ferrimagnetic wheel structure in VxSi12– (x = 1–3) clusters: photoelectron spectroscopy and density functional theory investigation, Nanoscale 6, 14617 (2014)
Y. Li, N. M. Tam, P. Claes, A. P. Woodham, J. T. Lyon, V. T. Ngan, M. T. Nguyen, P. Lievens, A. Fielicke, E. Janssens, Structure assignment, electronic properties, and magnetism quenching of endohedrally doped neutral silicon clusters, SinCo (n = 10–12), J. Phys. Chem. A 118, 8198 (2014)
D. Bista, A. C. Reber, V. Chauhan, S. N. Khanna, Electronic and magnetic properties of Fe2Sin (1 ≤ n ≤ 12) +/ 0 / – clusters, Chem. Phys. Lett. 706, 113 (2018)
B. Yang, X. L. H. G. Xu, Xu, U. Farooq, W. J. Zheng, Structural evolution and electronic properties of CoSin– (n = 3–12) clusters: mass-selected anion photoelectron spectroscopy and quantum chemistry calculations, Phys. Chem. Chem. Phys. 21, 6207 (2019)
M. Ohara, K. Miyajima, A. Pramann, A. Nakajima, K. Kaya, Geometric and electronic structures of terbium-silicon mixed clusters (TbSin; 6 ≤ N ≤ 16), J. Phys. Chem. A 106, 3702 (2002)
A. Grubisic, H. Wang, Y. J. Ko, K. H. Bowen, Photoelectron spectroscopy of europium-silicon cluster anions, EuSin– (3 ≤ N ≤ 17), J. Chem. Phys. 129, 054302 (2008)
K. Koyasu, J. Atobe, S. Furuse, A. Nakajima, Anion photoelectron spectroscopy of transition metal- and lanthanide metal-silicon clusters: MSin– (N = 6–20), J. Chem. Phys. 129, 214301 (2008)
V. Kumar, A. K. Singh, Y. Kawazoe, Charged and magnetic fullerenes of silicon by metal encapsulation: predictions from ab initio calculations, Phys. Rev. B 74, 125411 (2006)
Q. Peng, J. Shen, Growth behavior of La@Sin (N = 1–21) metal-encapsulated clusters, J. Chem. Phys. 128, 084711 (2008)
R. N. Zhao, J. G. Han, J. T. Bai, L. S. Sheng, The medium-sized charged YbSin± (N = 7–13) clusters: a relativistic computational investigation, Chem. Phys. 378, 82 (2010)
A. Grubisic, Y. J. Ko, H. Wang, K. H. Bowen, Photoelectron spectroscopy of lanthanide-silicon cluster anions LnSin– (3 ≤ n ≤ 13; Ln = Ho, Gd, Pr, Sm, Eu, Yb): prospect for magnetic silicon-based clusters, J. Am. Chem. Soc. 131, 10783 (2009)
G. F. Zhao, J. M. Sun, Y. Z. Gu, Y. X. Wang, Density-functional study of structural, electronic, and magnetic properties of the EuSin (n = 1–13) clusters, J. Chem. Phys. 131, 114312 (2009)
J. Yang, J. Wang, Y. Hao, Europium-doped silicon clusters EuSin (n = 3–11) and their anions: structures, thermochemistry, electron affinities, and magnetic moments, Theor. Chem. Acc. 134, 81 (2015)
J. M. Zhang, H. Q. Wang, H. F. Li, B, Xie, C. H, L. Y. Jiang, Insights into the structure and growth of Lu-doped germanium clusters: comparing density functional theory calculations with photoelectron spectroscopy experiments, Mol. Phys. 120, 2131644 (2022)
B. Xie, H. Q. Wang, H. F. Li, J. K. Zeng, Structural and electronic properties of Ln2Si6q: (Sm, Eu, Yb; q = 0, -1) clusters, Chem. Phys. 566, 111782 (2023)
Y. W. Fan, H. Q. Wang, H. F. Li, The stability, electronic, and magnetic properties of rare-earth doped silicon-based clusters, J. Mol. Model. 25, 221 (2019)
Y. W. Fan, H. Q. Wang, H. F. Li, Probing the structural and electronic properties of anionic europium-doped silicon clusters by density functional theory and comparison of experimental photoelectron spectroscopy, Chem. Phys. 538, 110918 (2020)
Y. W. Fan, H. Q. Wang, H. F. Li, Structural and electronic properties of exohedrally doped neutral silicon clusters LnSin (n = 5, 10; Ln = Sm, Eu, Yb), Phys. Chem. Chem. Phys. 22, 20545 (2020)
Y. R. Zhao, T. T. Bai, L. N. Jia, W. Xin, Y. F. Hu, X. S. Zheng, S. T. Hou, Probing the structural and electronic properties of neutral and anionic lanthanum-doped silicon clusters, J. Phys. Chem. C 123, 28561 (2019)
M. Saunders, Stochastic search for isomers on a quantum mechanical surface, J. Comput. Chem. 25, 621 (2004)
J. Zhang, M. Dolg, The artificial bee colony algorithm for cluster global optimization, Phys. Chem. Chem. Phys. 17, 24173 (2015)
Y. W. Fan, X. Y. Kong, L. J. Zhao, H. Q. Wang, H. F. Li, Q. Zhan, B. Xie, H. G. Xu, W. J. Zheng, A joint experimental and theoretical study on structural, electronic, and magnetic properties of MnGen– (n = 3–14) clusters, J. Chem. Phys. 154, 204302 (2021)
C. Adamo, V. Barone, Toward reliable density functional methods without adjustable parameters: the pbe0 model, J. Chem. Phys. 110, 6158 (1999)
M. Dolg, H. Stoll, H. Preuss, Energy-adjusted ab initio pseudopotentials for the rare earth elements, J. Chem. Phys. 90, 1730 (1989)
X. Cao, M. Dolg, Segmented contraction scheme for small-core lanthanide pseudopotential basis sets, J. Mol. Struct.: THEOCHEM. 581, 139 (2002)
C. T. Lee, W. Yang, R. G. Parr, Development of the colle-salvetti correlation-energy into a function of the electron density, Phys. Rev. B 37, 785 (1988)
A. D. Becke, Density-functional exchange-energy approximation with correct asymptotic behavior, Phys. Rev. A 38, 3098 (1988)
M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr, J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski and D. J. Fox. Gaussian 09, Revision C.01, Gaussian Inc., Wallingford CT, 2010.
H. G. Xu, X. Y. Kong, X. J. Deng, Z. G. Zhang, W. J. Zheng, Smallest fullerene-like silicon cage stabilized by a V2 unit, J. Chem. Phys. 140, 024308 (2014)
R. N. Zhao, J. G. Han, Y. Duan, Density functional theory investigations on the geometrical and electronic properties and growth patterns of Sin (n = 10–20) clusters with bimetal Pd2 impurities, Thin Solid Films 556, 571 (2014)
S. J. Lu, Exploring the structural evolution and electronic properties of medium-sized Nb2Sin–/0 (n = 13–20) clusters by density functional theory calculations, Chem. Phys. Lett. 713, 58 (2018)
S. J. Lu. Exploring the structural and electronic properties of double-Fe atom-doped Si20 cluster by quantum chemical calculations, Theor. Chem. Acc. 138, 48 (2019)
D. J. Tozer, N. C. Handy, Improving virtual kohn-sham orbitals and eigenvalues: application to excitation energies and static polarizabilities, J. Chem. Phys. 109, 10180 (1998)
D. Bandyopadhyay, Electronic structures, and stabilities of Cu-doped Gen clusters: density functional modeling, J. Mol. Model. 18, 3887 (2012)
M. A. Zwijnenburg, S. T. Bromley, C. van Alsenoy, T. Maschmeyer, Factors affecting ionicity in all-silica materials: a density functional cluster study, J. Phys. Chem. A 106, 12376 (2002)
T. Lu, F. W. Chen, Multiwfn: a multifunctional wavefunction analyzer, J. Comput. Chem. 33, 580 (2012)
W. Humphrey, A. Dalke, K. Schulten, VMD: visual molecular dynamic, J. Mol. Graphics 14, 33 (1996)
D. Y. Zubarev, A. I. Boldyrev, Developing paradigms of chemical bonding: adaptive natural density partitioning, Phys. Chem. Chem. Phys. 10, 5207 (2008)
E. Matito, J. Poater, M. Sola, M. Duran, P. Salvador, Comparison of the aim delocalization index and the mayer and fuzzy atom bond orders, J. Phys. Chem. A 109, 9904 (2005)
Funding
The project was supported by the Natural Science Foundation of Fujian Province of China (Grant Nos. 2023J01141 and 2017 J01001), the Science and Technology Plan of Quanzhou (Grant Nos. 2018C077R and 2018C078R), the New Century Excellent Talents in Fujian Province University (Grant No. 2014FJ-NCET-ZR07).
Author information
Authors and Affiliations
Contributions
Conceptualization: HQW; Formal analysis: XB and HQW; Investigation: HFL and JKZ; Methodology: XB, HQW and HFL; Supervision: HQW; Validation: JMZ; Writing original draft: BX; Writing—review and editing: XB, HQW, HFL, JMZ, JKZ, LXQ, and XJM.
Corresponding author
Ethics declarations
Competing Interests
The authors declare no competing interests.
Ethical Approval
Not applicable.
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary Information
Below is the link to the electronic supplementary material.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Xie, B., Wang, HQ., Li, HF. et al. Structural and Electronic Properties of Bimetallic Eu2 Doped Silicon-Based Clusters. J Clust Sci 35, 115–127 (2024). https://doi.org/10.1007/s10876-023-02466-z
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10876-023-02466-z