Skip to main content
Log in

Structural and Electronic Properties of Bimetallic Eu2 Doped Silicon-Based Clusters

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

The rare earth metal doped Si-based semiconductor clusters have aroused increased attention in a lot of fields. Here, the structural evolution, magnetic and spectral properties of bimetallic Eu2 doped silicon-based clusters, Eu2Sin (1 ≤ n ≤ 12), have been investigated using artificial bees colony and Saunders “Kick” global optimization techniques associated with density-functional theory calculations. The calculations show that the two Eu atoms prefer to occupy the surface position of parent silicon clusters and form exohedral geometric structures. It is found that the structural growth pattern is reflected at n = 4–8 where the two Eu atoms lie on the framework of distorted pentagon. Eu2Si5 is determined to the most stable cluster owing to the strong interaction between host Si atoms and dual Eu atoms. The natural atomic orbital method reveals that the charges always transfer from the Eu to Si parent atoms. Interestingly, the total magnetic moments are not quenched but superimposed together with introduction into Si-based cluster, 4f electrons almost remain in two Eu atoms and hardly participate in the molecular Si–Eu bonding. Moreover, theoretical photoelectron spectra are predicted in order to provide a theoretical guidance for the future photoelectron spectroscopy experiments of double rare earth metal doped Si-based semiconductor clusters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

All data generated or analysed during this study are included in this article (and its supplementary information files).

References

  1. C. Lu, W. G. Gong, Q. Li, C. F. Chen, Elucidating stress-strain relations of ZrB12 from first-principles studies, J. Phys. Chem. Lett. 11, 9165 (2020)

    Article  CAS  PubMed  Google Scholar 

  2. Y. W. Fan, H. Q. Wang, H. F. Li, Microsolvation of Co in water: Density functional theory calculations coupled with stochastic kicking method, Spectrochim. Acta A 245, 118935 (2021)

    Article  CAS  Google Scholar 

  3. Q. Duan, J. Shen, X. Zhong, H. Lu, C. Lu, Structural phase transition and superconductivity of ytterbium under high pressure, Phys. Rev. B 105, 214503 (2022)

    Article  CAS  Google Scholar 

  4. A. Tekin, B. Hartke, Global geometry optimization of small silicon clusters with empirical potentials and at the dft level, Phys. Chem. Chem. Phys. 6, 503 (2004)

    Article  CAS  Google Scholar 

  5. J. T. Lyon, P. Gruene, A. Fielicke, G. Meijer, E. Janssens, P. Claes, P. Lievens, Structures of silicon cluster cations in the gas phase, J. Am. Chem. Soc. 131, 1115 (2009)

    Article  CAS  PubMed  Google Scholar 

  6. C. Lu, X. Y. Kuang, Z. W. Lu, A. J. Mao, Y. M. Ma, Determination of structures, stabilities, and electronic properties for bimetallic cesium-doped gold clusters: a density functional theory study, J. Phys. Chem. A 115, 9273 (2011)

    Article  CAS  Google Scholar 

  7. Y. Chen, J. J. Deng, W. W. Yao, J. I. Gurti, W. Li, W. J. Wang, J. X. Yao, X. L. Ding, Non-stoichiometric molybdenum sulfide clusters and their reactions with the hydrogen molecule, Phys. Chem. Chem. Phys. 23, 347 (2021)

    Article  PubMed  Google Scholar 

  8. D. Die, B. X. Zheng, J. Y. Yue, J. J. Guo, Q. Du, The ground-state structure, optical-absorption and photoelectron spectrum of silver clusters, Physica E. 117, 113805 (2020)

    Article  CAS  Google Scholar 

  9. Y. Y. Wang, X. L. Ding, Y. Chen, M. M. Wang, W. Li and X. Wang, Trimetallic clusters in the sumanene bowl for dinitrogen activation, Phys. Chem. Chem. Phys. 24, 23265 (2022)

    Article  CAS  PubMed  Google Scholar 

  10. X. Y. Shen, D. Die, J. P. Yang, J. J. Guo, The ground state structures and spectra of Ag20 clusters and the adsorption to carbon monoxide, Mater. Chem. Phys. 273, 125134 (2021)

    Article  CAS  Google Scholar 

  11. B. X. Li, P. L. Cao, Water adsorption on Si8 – 10 clusters: a full-potential linearmuffin-tin-orbital molecular-dynamics study, J. Phys.: Condens. Mat. 13, 1 (2001)

    Article  Google Scholar 

  12. M. Ishimaru, Molecular-dynamics study on atomistic structures of amorphous silicon, J. Phys.: Condes. Mat. 13, 4181 (2001)

    CAS  Google Scholar 

  13. B. X. Li, P. L. Cao, S. C. Zhan, Ground state structures of Sin (n = 11–25) clusters, Phys. Lett. A 316, 252 (2003)

    Article  CAS  Google Scholar 

  14. J. Bai, L. F. Cui, J. Wang, S. Yoo, X. Li, J. Jellinek, C. Koehler, T. Frauenheim, L. S. Wang, X. C. Zeng, Structural evolution of anionic silicon clusters SiN (20 ≤ N ≤ 45), J. Phys. Chem. A 110, 908 (2006)

    Article  CAS  PubMed  Google Scholar 

  15. A. Fielicke, J. T. Lyon, M. Haertelt, G. Meijer, P. Claes, J. de. Haeck, P. Lievens, Vibrational spectroscopy of neutral silicon clusters via far-IR-VUV two color ionization, J. Chem. Phys. 131, 171105 (2009)

    Article  PubMed  Google Scholar 

  16. W. Qin, W. C. Lu, L. Z. Zhao, Q. J. Zang, Stabilities and fragmentation energies of Sin clusters (n = 2–33), J. Phys.: Condens. Mat. 21, 455501 (2009)

    Google Scholar 

  17. S. M. Aguilera-Segura, J. M. Seminario, Ab initio analysis of silicon nano-clusters, J. Phys. Chem. C 118, 1397 (2014)

    Article  CAS  Google Scholar 

  18. L. Z. Zhao, W. C. Lu, W. Qin, Q. J. Zang, K. M. Ho, C. Z. Wang, Theoretical prediction of Si2-Si33 absorption spectra, J. Phys. Chem. A 121, 6388 (2017)

    Article  CAS  PubMed  Google Scholar 

  19. R. Q. Zhang, M. W. Zhao, S. T. Lee, Silicon monoxide clusters: the favorable precursors for forming silicon nanostructures, Phys. Rev. Lett. 93, 095503 (2004)

    Article  CAS  PubMed  Google Scholar 

  20. P. De Padova, Quaresima, C. B. Olivieri, P. Perfetti, G. Le Lay, Sp2-like hybridization of silicon valence orbitals in silicene nanoribbons, Appl. Phys. Lett. 98, 081909 (2011)

    Article  Google Scholar 

  21. S. M. Beck, Studies of silicon cluster-metal atom compound formation in a supersonic molecular beam, J. Chem. Phys. 87, 4233 (1987)

    Article  CAS  Google Scholar 

  22. S. M. Beck, Mixed metal-silicon clusters formed by chemical reaction in a supersonic molecular beam: implications for reactions at the metal/silicon interface, J. Chem. Phys. 90, 6306 (1989)

    Article  CAS  Google Scholar 

  23. H. Hiura, T. Miyazaki, T. Kanayama, Formation of metal-encapsulating Si cage clusters, Phys. Rev. Lett. 86, 1733 (2001)

    Article  CAS  PubMed  Google Scholar 

  24. V. Kumar, Y. Kawazoe, Magic behavior of Si15M and Si16M (M = Cr, Mo, and W) clusters, Phys. Rev. B 65, 073404 (2002)

    Article  Google Scholar 

  25. M. Ohara, K. Koyasu, A. Nakajima, K. Kaya, Geometric and electronic structures of metal (M)-doped silicon clusters (M = Ti, Hf, Mo and W), Chem. Phys. Lett. 371, 490 (2003)

    Article  CAS  Google Scholar 

  26. J. U. Reveles, S. N. Khanna, Nearly-free-electron gas in a silicon cage, Phys. Rev. B 72, 165413 (2005)

    Article  Google Scholar 

  27. K. Koyasu, M. Akutsu, M. Mitsui, A. Nakajima, Selective formation of MSi16 (M = Sc, Ti, and V), J. Am. Chem. Soc. 127, 4998 (2005)

    Article  CAS  PubMed  Google Scholar 

  28. L. J. Guo, G. F. Zhao, Y. Z. Gu, X. Liu, Z. Zeng, Density functional investigation of metal-silicon cage clusters MSin (M = Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn; n = 8–16), Phys. Rev. B 77, 195417 (2008)

    Article  Google Scholar 

  29. D. Palagin, M. Gramzow, K. Reuter, On the stability of “nonmagic” endohedrally doped si clusters: a first-principles sampling study of MSi16+ (M = Ti, V, Cr), J. Chem. Phys. 134, 244705 (2011)

    Article  PubMed  Google Scholar 

  30. H. Kawamura, V. Kumar, Y. Kawazoe, Growth behavior of metal-doped silicon clusters SinM (M = Ti, Zr, Hf; n = 8–16), Phys. Rev. B 71, 075423 (2005)

    Article  Google Scholar 

  31. J. Wang, J. Zhao, L. Ma, B. Wang, G. Wang, Structure and magnetic properties of cobalt doped Sin (n = 2–14) clusters, Phys. Lett. A 367, 335 (2007)

    Article  CAS  Google Scholar 

  32. G. Mpourmpakis, G. E. Froudakis, A. N. Andriotis, M. Menon, Fe encapsulation by silicon clusters: ab initio electronic structure calculations, Phys. Rev. B 68, 125407 (2003)

    Article  Google Scholar 

  33. V. Kumar, Alchemy at the nanoscale: magic heteroatom clusters and assemblies, Comput. Mater. Sci. 36, 1 (2006)

    Article  CAS  Google Scholar 

  34. A. N. Andriotis, G. Mpourmpakis, G. E. Froudakis, M. Menon, Magnetic enhancement and magnetic reduction in binary clusters of transition metal atoms, J. Chem. Phys. 120, 11901 (2004)

    Article  CAS  PubMed  Google Scholar 

  35. J. R. Li, G. H. Wang, C. H. Yao, Y. W. Mu, J. G. Wan, M. Han, Structures and magnetic properties of SinMn (n = 1–15) clusters, J. Chem. Phys. 130, 164514 (2009)

    Article  PubMed  Google Scholar 

  36. X. Kong, H. G. Xu, W. Zheng, Structures and magnetic properties of CrSin (n = 3–12) clusters: photoelectron spectroscopy and density functional calculations, J. Chem. Phys. 137, 064307 (2012)

    Article  PubMed  Google Scholar 

  37. L. Ma, J. Zhao, J. Wang, B. Wang, Q. Lu, G. Wang, Growth behavior and magnetic properties of SinFe (n = 2–14) clusters, Phys. Rev. B 73, 125439 (2006)

    Article  Google Scholar 

  38. X. Huang, H. G. Xu, S. Lu, Y. Su, R. King, J. Zhao, W. Zheng, Discovery of a silicon-based ferrimagnetic wheel structure in VxSi12 (x = 1–3) clusters: photoelectron spectroscopy and density functional theory investigation, Nanoscale 6, 14617 (2014)

    Article  CAS  PubMed  Google Scholar 

  39. Y. Li, N. M. Tam, P. Claes, A. P. Woodham, J. T. Lyon, V. T. Ngan, M. T. Nguyen, P. Lievens, A. Fielicke, E. Janssens, Structure assignment, electronic properties, and magnetism quenching of endohedrally doped neutral silicon clusters, SinCo (n = 10–12), J. Phys. Chem. A 118, 8198 (2014)

    Article  CAS  PubMed  Google Scholar 

  40. D. Bista, A. C. Reber, V. Chauhan, S. N. Khanna, Electronic and magnetic properties of Fe2Sin (1 ≤ n ≤ 12) +/ 0 / – clusters, Chem. Phys. Lett. 706, 113 (2018)

    Article  CAS  Google Scholar 

  41. B. Yang, X. L. H. G. Xu, Xu, U. Farooq, W. J. Zheng, Structural evolution and electronic properties of CoSin (n = 3–12) clusters: mass-selected anion photoelectron spectroscopy and quantum chemistry calculations, Phys. Chem. Chem. Phys. 21, 6207 (2019)

    Article  CAS  PubMed  Google Scholar 

  42. M. Ohara, K. Miyajima, A. Pramann, A. Nakajima, K. Kaya, Geometric and electronic structures of terbium-silicon mixed clusters (TbSin; 6 ≤ N ≤ 16), J. Phys. Chem. A 106, 3702 (2002)

    Article  CAS  Google Scholar 

  43. A. Grubisic, H. Wang, Y. J. Ko, K. H. Bowen, Photoelectron spectroscopy of europium-silicon cluster anions, EuSin (3 ≤ N ≤ 17), J. Chem. Phys. 129, 054302 (2008)

    Article  PubMed  Google Scholar 

  44. K. Koyasu, J. Atobe, S. Furuse, A. Nakajima, Anion photoelectron spectroscopy of transition metal- and lanthanide metal-silicon clusters: MSin (N = 6–20), J. Chem. Phys. 129, 214301 (2008)

    Article  PubMed  Google Scholar 

  45. V. Kumar, A. K. Singh, Y. Kawazoe, Charged and magnetic fullerenes of silicon by metal encapsulation: predictions from ab initio calculations, Phys. Rev. B 74, 125411 (2006)

    Article  Google Scholar 

  46. Q. Peng, J. Shen, Growth behavior of La@Sin (N = 1–21) metal-encapsulated clusters, J. Chem. Phys. 128, 084711 (2008)

    Article  PubMed  Google Scholar 

  47. R. N. Zhao, J. G. Han, J. T. Bai, L. S. Sheng, The medium-sized charged YbSin± (N = 7–13) clusters: a relativistic computational investigation, Chem. Phys. 378, 82 (2010)

    Article  CAS  Google Scholar 

  48. A. Grubisic, Y. J. Ko, H. Wang, K. H. Bowen, Photoelectron spectroscopy of lanthanide-silicon cluster anions LnSin (3 ≤ n ≤ 13; Ln = Ho, Gd, Pr, Sm, Eu, Yb): prospect for magnetic silicon-based clusters, J. Am. Chem. Soc. 131, 10783 (2009)

    Article  CAS  PubMed  Google Scholar 

  49. G. F. Zhao, J. M. Sun, Y. Z. Gu, Y. X. Wang, Density-functional study of structural, electronic, and magnetic properties of the EuSin (n = 1–13) clusters, J. Chem. Phys. 131, 114312 (2009)

    Article  PubMed  Google Scholar 

  50. J. Yang, J. Wang, Y. Hao, Europium-doped silicon clusters EuSin (n = 3–11) and their anions: structures, thermochemistry, electron affinities, and magnetic moments, Theor. Chem. Acc. 134, 81 (2015)

    Article  Google Scholar 

  51. J. M. Zhang, H. Q. Wang, H. F. Li, B, Xie, C. H, L. Y. Jiang, Insights into the structure and growth of Lu-doped germanium clusters: comparing density functional theory calculations with photoelectron spectroscopy experiments, Mol. Phys. 120, 2131644 (2022)

    Article  Google Scholar 

  52. B. Xie, H. Q. Wang, H. F. Li, J. K. Zeng, Structural and electronic properties of Ln2Si6q: (Sm, Eu, Yb; q = 0, -1) clusters, Chem. Phys. 566, 111782 (2023)

    Article  CAS  Google Scholar 

  53. Y. W. Fan, H. Q. Wang, H. F. Li, The stability, electronic, and magnetic properties of rare-earth doped silicon-based clusters, J. Mol. Model. 25, 221 (2019)

    Article  CAS  PubMed  Google Scholar 

  54. Y. W. Fan, H. Q. Wang, H. F. Li, Probing the structural and electronic properties of anionic europium-doped silicon clusters by density functional theory and comparison of experimental photoelectron spectroscopy, Chem. Phys. 538, 110918 (2020)

    Article  CAS  Google Scholar 

  55. Y. W. Fan, H. Q. Wang, H. F. Li, Structural and electronic properties of exohedrally doped neutral silicon clusters LnSin (n = 5, 10; Ln = Sm, Eu, Yb), Phys. Chem. Chem. Phys. 22, 20545 (2020)

    Article  CAS  PubMed  Google Scholar 

  56. Y. R. Zhao, T. T. Bai, L. N. Jia, W. Xin, Y. F. Hu, X. S. Zheng, S. T. Hou, Probing the structural and electronic properties of neutral and anionic lanthanum-doped silicon clusters, J. Phys. Chem. C 123, 28561 (2019)

    Article  CAS  Google Scholar 

  57. M. Saunders, Stochastic search for isomers on a quantum mechanical surface, J. Comput. Chem. 25, 621 (2004)

    Article  CAS  PubMed  Google Scholar 

  58. J. Zhang, M. Dolg, The artificial bee colony algorithm for cluster global optimization, Phys. Chem. Chem. Phys. 17, 24173 (2015)

    Article  CAS  PubMed  Google Scholar 

  59. Y. W. Fan, X. Y. Kong, L. J. Zhao, H. Q. Wang, H. F. Li, Q. Zhan, B. Xie, H. G. Xu, W. J. Zheng, A joint experimental and theoretical study on structural, electronic, and magnetic properties of MnGen (n = 3–14) clusters, J. Chem. Phys. 154, 204302 (2021)

    Article  CAS  PubMed  Google Scholar 

  60. C. Adamo, V. Barone, Toward reliable density functional methods without adjustable parameters: the pbe0 model, J. Chem. Phys. 110, 6158 (1999)

    Article  CAS  Google Scholar 

  61. M. Dolg, H. Stoll, H. Preuss, Energy-adjusted ab initio pseudopotentials for the rare earth elements, J. Chem. Phys. 90, 1730 (1989)

    Article  CAS  Google Scholar 

  62. X. Cao, M. Dolg, Segmented contraction scheme for small-core lanthanide pseudopotential basis sets, J. Mol. Struct.: THEOCHEM. 581, 139 (2002)

    Article  CAS  Google Scholar 

  63. C. T. Lee, W. Yang, R. G. Parr, Development of the colle-salvetti correlation-energy into a function of the electron density, Phys. Rev. B 37, 785 (1988)

    Article  CAS  Google Scholar 

  64. A. D. Becke, Density-functional exchange-energy approximation with correct asymptotic behavior, Phys. Rev. A 38, 3098 (1988)

    Article  CAS  Google Scholar 

  65. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr, J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski and D. J. Fox. Gaussian 09, Revision C.01, Gaussian Inc., Wallingford CT, 2010.

  66. H. G. Xu, X. Y. Kong, X. J. Deng, Z. G. Zhang, W. J. Zheng, Smallest fullerene-like silicon cage stabilized by a V2 unit, J. Chem. Phys. 140, 024308 (2014)

    Article  PubMed  Google Scholar 

  67. R. N. Zhao, J. G. Han, Y. Duan, Density functional theory investigations on the geometrical and electronic properties and growth patterns of Sin (n = 10–20) clusters with bimetal Pd2 impurities, Thin Solid Films 556, 571 (2014)

    Article  CAS  Google Scholar 

  68. S. J. Lu, Exploring the structural evolution and electronic properties of medium-sized Nb2Sin–/0 (n = 13–20) clusters by density functional theory calculations, Chem. Phys. Lett. 713, 58 (2018)

    Article  CAS  Google Scholar 

  69. S. J. Lu. Exploring the structural and electronic properties of double-Fe atom-doped Si20 cluster by quantum chemical calculations, Theor. Chem. Acc. 138, 48 (2019)

    Article  Google Scholar 

  70. D. J. Tozer, N. C. Handy, Improving virtual kohn-sham orbitals and eigenvalues: application to excitation energies and static polarizabilities, J. Chem. Phys. 109, 10180 (1998)

    Article  CAS  Google Scholar 

  71. D. Bandyopadhyay, Electronic structures, and stabilities of Cu-doped Gen clusters: density functional modeling, J. Mol. Model. 18, 3887 (2012)

    Article  CAS  PubMed  Google Scholar 

  72. M. A. Zwijnenburg, S. T. Bromley, C. van Alsenoy, T. Maschmeyer, Factors affecting ionicity in all-silica materials: a density functional cluster study, J. Phys. Chem. A 106, 12376 (2002)

    Article  CAS  Google Scholar 

  73. T. Lu, F. W. Chen, Multiwfn: a multifunctional wavefunction analyzer, J. Comput. Chem. 33, 580 (2012)

    Article  PubMed  Google Scholar 

  74. W. Humphrey, A. Dalke, K. Schulten, VMD: visual molecular dynamic, J. Mol. Graphics 14, 33 (1996)

    Article  CAS  Google Scholar 

  75. D. Y. Zubarev, A. I. Boldyrev, Developing paradigms of chemical bonding: adaptive natural density partitioning, Phys. Chem. Chem. Phys. 10, 5207 (2008)

    Article  CAS  PubMed  Google Scholar 

  76. E. Matito, J. Poater, M. Sola, M. Duran, P. Salvador, Comparison of the aim delocalization index and the mayer and fuzzy atom bond orders, J. Phys. Chem. A 109, 9904 (2005)

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The project was supported by the Natural Science Foundation of Fujian Province of China (Grant Nos. 2023J01141 and 2017 J01001), the Science and Technology Plan of Quanzhou (Grant Nos. 2018C077R and 2018C078R), the New Century Excellent Talents in Fujian Province University (Grant No. 2014FJ-NCET-ZR07).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: HQW; Formal analysis: XB and HQW; Investigation: HFL and JKZ; Methodology: XB, HQW and HFL; Supervision: HQW; Validation: JMZ; Writing original draft: BX; Writing—review and editing: XB, HQW, HFL, JMZ, JKZ, LXQ, and XJM.

Corresponding author

Correspondence to Huai-Qian Wang.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Ethical Approval

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 11198.3 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, B., Wang, HQ., Li, HF. et al. Structural and Electronic Properties of Bimetallic Eu2 Doped Silicon-Based Clusters. J Clust Sci 35, 115–127 (2024). https://doi.org/10.1007/s10876-023-02466-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-023-02466-z

Keywords

Navigation