Skip to main content

Advertisement

Log in

Physical Properties of B12C4N8 Under the External Electric Field

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

Cluster B12C4N8 has a broad application prospect. It is of great significance for investigating the properties of cluster B12C4N8 under the external electric field. The dipole moment, energy gap and infrared spectrum of cluster B12C4N8 molecule under external electric field (0–30 V/nm) are studied with density functional theory at B3LYP/6-31G(d) level. The dipole moment increases almost linearly from 0.87838 to 30.79096 Debye and the energy gap decreases continuously. Meanwhile, the ultraviolet-visible absorption spectra, the excitation wavelength, the excitation energy, oscillator strength and real space representation of hole and electron distributions of first ten excited states of cluster B12C4N8 under the external electric field are also studied with the time-dependent density functional theory at B3LYP/6-31G(d) level. It is found that the absorption peak of cluster B12C4N8 occurs blue shift. The excitation energy decreases significantly as the external electric field increases from 0 to 15 V/nm, increases as the external electric field increases from 15 to 20 V/nm, and decreases almost linearly as the external electric field increases from 20 to 30 V/nm. The results can offer an important reference to use external electric Fifield to tune the properties of cluster B12C4N8.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. X. Blase, A. Rubio, S. G. Louie, and M. L. Cohen (1994). Europhysics Letters 28 (5), 335.

    Article  CAS  Google Scholar 

  2. T. Oku, A. Nishiwaki, and I. Narita (2016). Science and Technology of Advanced Materials 5, 635.

    Article  Google Scholar 

  3. A. Rubio, J. L. Corkill, and M. L. Cohen (1994). Phys Rev B Condens Matter 49, 5081.

    Article  CAS  PubMed  Google Scholar 

  4. O. Stephan, Y. Bando, A. Loiseau, F. Willaime, N. Shramchenko, T. Tamiya, and T. Sato (1998). Applied Physics A—Materials Science & Processing 67, 107.

    Article  CAS  Google Scholar 

  5. D. L. Strout (2000). Journal of Physical Chemistry A 104, 3364.

    Article  CAS  Google Scholar 

  6. T. Oku, T. Hirano, M. Kuno, T. Kusunose, K. Niihara, and K. Suganuma (2000). Materials Science and Engineering: B 74, 206.

    Article  Google Scholar 

  7. N. G. Chopra, R. J. Luyken, K. Cherrey, V. H. Crespi, M. L. Cohen, S. G. Louie, and A. Zettl (1995). Science 269, 966.

    Article  CAS  PubMed  Google Scholar 

  8. B. R. Elliott, J. J. Host, V. P. Dravid, M. H. Teng, and J. H. Hwang (2011). Journal of Materials Research 12, 3328.

    Article  Google Scholar 

  9. L. Rapoport, Y. Bilik, Y. Feldman, M. Homyonfer, S. R. Cohen, and R. Tenne (1997). Nature 387, 791.

    Article  CAS  Google Scholar 

  10. Y. Saito, T. Yoshikawa, M. Okuda, N. Fujimoto, K. Sumiyama, K. Suzuki, A. Kasuya, and Y. Nishina (1993). Journal of Physics and Chemistry of Solids 54, 1849.

    Article  CAS  Google Scholar 

  11. J. Sloan, J. Cook, M. L. H. Green, J. L. Hutchison, and R. Tenne (1997). Journal of Materials Chemistry 7, 1089.

    Article  CAS  Google Scholar 

  12. L. Maya and L. A. Harris (1990). Journal of the American Ceramic Society 73, 1912.

    Article  CAS  Google Scholar 

  13. M. Terrones, A. M. Benito, C. Manteca-Diego, W. K. Hsu, O. I. Osman, J. P. Hare, D. G. Reid, H. Terrones, A. K. Cheetham, K. Prassides, H. W. Kroto, and D. R. M. Walton (1996). Chemical Physics Letters 257, 576.

    Article  CAS  Google Scholar 

  14. I. Montero and L. Galán (1997). Journal of Materials Research 12, 1563.

    Article  CAS  Google Scholar 

  15. Y. Zhang, H. Gu, K. Suenaga, and S. Iijima (1997). Chemical Physics Letters 279, 264.

    Article  CAS  Google Scholar 

  16. F. L. Huang, C. B. Cao, X. Xiang, R. T. Lv, and H. S. Zhu (2004). Diamond and Related Materials 13, 1757.

    Article  CAS  Google Scholar 

  17. J. Yang, F. Wang, L. Fang, and T. Tan (2007). Environmental Pollution 149, 125.

    Article  CAS  PubMed  Google Scholar 

  18. H. A. Castillo, P. J. Arango, J. M. Vélez, E. Restrepo-Parra, G. Soto, and W. D. la Cruz (2010). Surface and Coatings Technology 204, 4051.

    Article  CAS  Google Scholar 

  19. X. Wei, M.-S. Wang, Y. Bando, and D. Golberg (2011). ACS Nano 5, 2916.

    Article  CAS  PubMed  Google Scholar 

  20. A. Du, Y. Chen, Z. Zhu, G. Lu, and S. C. Smith (2009). Journal of the American Chemical Society 131, 1682.

    Article  CAS  PubMed  Google Scholar 

  21. I. Caretti, R. Torres, R. Gago, A. R. Landa-Cánovas, and I. Jiménez (2010). Chemistry of Materials 22, 1949.

    Article  CAS  Google Scholar 

  22. P. Bachmann, F. Dull, F. Spath, U. Bauer, H. P. Steinruck, and C. Papp (2018). J Chem Phys 149, 164709.

    Article  PubMed  Google Scholar 

  23. J. Zhao, C. Zhuang, and X. Jiang (2010). Diamond and Related Materials 19, 1419.

    Article  CAS  Google Scholar 

  24. M. T. Baei, A. S. Ghasemi, E. Tazikeh Lemeski, A. Soltani, and N. Gholami (2016). Journal of Cluster Science 27, 1081.

    Article  CAS  Google Scholar 

  25. D. C. F. Matsukura, T. Omiya, E. Abe, T. Dietl, Y. Ohno, K. Ohtani, and H. Ohno (2002). Physica E: Low-Dimensional Systems and Nanostructures 12, 351.

    Article  CAS  Google Scholar 

  26. C. D. Fu, Y. He, and J. Pfaendtner (2019). The Journal of Physical Chemistry A 123, 3080.

    Article  CAS  PubMed  Google Scholar 

  27. C. V. Nguyen, H. D. Bui, T. D. Nguyen, and K. D. Pham (2019). Chemical Physics Letters 724, 1.

    Article  CAS  Google Scholar 

  28. H. Ohno, D. Chiba, F. Matsukura, T. Omiya, E. Abe, T. Dietl, Y. Ohno, and K. Ohtani (2000). Nature 408, 944.

    Article  CAS  PubMed  Google Scholar 

  29. J. Ren, B. Liu, X. Xu, L. Zhang, Y. Mao, X. Wu, Y. Zhang, L. Jiang, and X. Xin (2019). Optics Express 27, 2732.

    Article  PubMed  Google Scholar 

  30. M. Roman and S. Klokishner (2018). The Journal of Physical Chemistry A 122, 9093.

    Article  CAS  PubMed  Google Scholar 

  31. S. Shaik, D. Mandal, and R. Ramanan (2016). Nature Chemistry 8, 1091.

    Article  CAS  PubMed  Google Scholar 

  32. Q. Xiang, Y. Liu, X. Zhang, Y. Duan, A. Bumaliya, and M. Xiang (2019). Journal of Cluster Science 31, 951.

    Article  Google Scholar 

  33. X. Zhang, Y. Liu, X. Ma, and B. Abulimiti (2019). Journal of Cluster Science 30, 319.

    Article  CAS  Google Scholar 

  34. X. Zhang, Y. Liu, X. Ma, F. Jin, B. Abulimiti, and M. Xiang (2020). Optik 221, 165395.

    Article  CAS  Google Scholar 

  35. M. Frisch, G. Trucks, H. Schlegel, G. Scuseria, M. Robb, J. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. Hratchian, A. Izmaylov, J. Bloino, G. Zheng, J. Sonnenberg, M. Hada, and D. Fox (Gaussian Inc., Wallingford, CT, 2009).

  36. T. Lu and F. Chen (2012). Journal of Computational Chemistry 33, 580.

    Article  PubMed  Google Scholar 

  37. A. Seif, E. Zahedi, and T. S. Ahmadi (2011). The European Physical Journal B 82, 147.

    Article  CAS  Google Scholar 

  38. M. Hesabi and M. Hesabi (2013). Journal of Nanostructure in Chemistry 3, 22.

    Article  Google Scholar 

  39. S. W. Tang, L. L. Sun, J. D. Feng, H. Sun, R. S. Wang, and Y. F. Chang (2009). The European Physical Journal D 53, 197.

    Article  CAS  Google Scholar 

  40. T. Lin, W.-D. Zhang, J. Huang, and C. He (2005). The Journal of Physical Chemistry B 109, 13755.

    Article  CAS  PubMed  Google Scholar 

  41. K. Wu, J. Li, and C. Lin (2004). Chemical Physics Letters 388, 353.

    Article  CAS  Google Scholar 

  42. F. Li, Y. Zhang, and H. Chen (2014). Physica E: Low-Dimensional Systems and Nanostructures 56, 216.

    Article  CAS  Google Scholar 

  43. Z. Liu, T. Lu, and Q. Chen (2020). Carbon 165, 461.

    Article  CAS  Google Scholar 

  44. Z. Liu and T. Lu (2020). The Journal of Physical Chemistry C 124, 7353.

    Article  CAS  Google Scholar 

  45. J. Yuan, Y. Yuan, X. Tian, H. Wang, Y. Liu, and R. Feng (2019). The Journal of Physical Chemistry C 123, 29838.

    Article  CAS  Google Scholar 

  46. Y. Zhang, C. Shen, X. Lu, X. Mu, and P. Song (2020). Spectrochimica Acta A: Molecular and Biomolecular Spectroscopy 227, 117687.

    Article  CAS  PubMed  Google Scholar 

  47. S. Chen, N. Ullah, and R. Zhang (2018). The Journal of Physical Chemistry Letters 9, 4857.

    Article  CAS  PubMed  Google Scholar 

  48. M. Sima Abdollahi, E. Nemati-Kande, and A. Poursattar Marjani (2020). ChemistrySelect 5, 3971.

    Article  CAS  Google Scholar 

  49. D. Zhao, R. M. Saputra, P. Song, Y. Yang, F. Ma, and Y. Li (2020). Solar Energy 201, 872.

    Article  CAS  Google Scholar 

  50. N. Natarajan, L.-X. Shi, H. Xiao, J.-Y. Wang, L.-Y. Zhang, X. Zhang, and Z.-N. Chen (2019). Journal of Materials Chemistry C 7, 2604.

    Article  CAS  Google Scholar 

Download references

Funding

Xinjiang Autonomous Region Outstanding Youth Fund Project (Grant No.2022D01E12), Innovation team for monitoring of emerging contaminants and biomarkers (Grant NO.2021D14017), Scientific research program of colleges and universities in Xinjiang (Grant No. XJEDU2023Y029).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mei Xiang or Bumaliya Abulimiti.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1724 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kadir, A., Xiang, M., Abulimiti, B. et al. Physical Properties of B12C4N8 Under the External Electric Field. J Clust Sci 35, 45–53 (2024). https://doi.org/10.1007/s10876-023-02455-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-023-02455-2

Keywords

Navigation