Skip to main content
Log in

Probing the Structural Evolution, Stabilities and Properties of LiBn (n = 2–12) Clusters

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

In this paper, we used CALYPSO program which is conjuncted with DFT to investigate Li doped small-sized neutral Bn clusters. From ground-state and low energy structures, the properties and geometric significance of Li-doped boron clusters are greatly affected. Except for LiB9, which adds a B atom on preceding LiB8 boron wheel, the ground-state clusters of LiBn are formed by replacing the terminal boron atom of the Bn+1 clusters in the same size with a Li atom or by adding a Li atom to the Bn clusters. The transition point from 2 to 3D configuration of LiBn clusters appears at n = 5. The stability of LiBn clusters was analyzed by calculating the average binding energy, Gibbs free energy, first-order differential energy, second-order differential energy, HOMO–LUMO gap (the energy gap between the highest occupied and lowest unoccupied molecular orbital) and charge transfer. The results show that the LiB11 cluster with excellent symmetry and planar structure is the relative most stable structure. Molecular orbital and chemical bonding analysis indicated that the main reason for the stability of the LiB11 cluster is mainly due to the strong s-p bonding of B–B.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. A. P. Sergeeva, I. A. Popov, Z. A. Piazza, W.-L. Li, C. Romanescu, L.-S. Wang, and A. I. Boldyrev (2014). Understanding boron through size-selected clusters: structure, chemical bonding, and fluxionality. Acc. Chem. Res. 47, 1349–1358. https://doi.org/10.1021/ar400310g.

    Article  CAS  PubMed  Google Scholar 

  2. I. A. Popov, Z. A. Piazza, W.-L. Li, L.-S. Wang, and A. I. Boldyrev (2013). A combined photoelectron spectroscopy and ab initio study of the quasi-planar B24− cluster. J. Chem. Phys. 139, 144307. https://doi.org/10.1063/1.4824156.

    Article  CAS  PubMed  Google Scholar 

  3. T. B. Tai and M. T. Nguyen (2015). Electronic structure and photoelectron spectra of Bn with n = 26–29: an overview of structural characteristics and growth mechanism of boron clusters. Phys. Chem. Chem. Phys. 17, 13672–13679. https://doi.org/10.1039/C5CP01851J.

    Article  CAS  PubMed  Google Scholar 

  4. Q. Chen, W.-L. Li, X.-Y. Zhao, H.-R. Li, L.-Y. Feng, H.-J. Zhai, S.-D. Li, and L.-S. Wang (2017). B33– and B34–: aromatic planar boron clusters with a hexagonal vacancy. Eur. J. Inorg. Chem. 2017, 4546–4551. https://doi.org/10.1002/ejic.201700573.

    Article  CAS  Google Scholar 

  5. W.-L. Li, Q. Chen, W.-J. Tian, H. Bai, Y.-F. Zhao, H.-S. Hu, J. Li, H.-J. Zhai, S.-D. Li, and L.-S. Wang (2014). The B35 cluster with a double-hexagonal vacancy: a new and more flexible structural motif for borophene. J. Am. Chem. Soc. 136, 12257–12260. https://doi.org/10.1021/ja507235s.

    Article  CAS  PubMed  Google Scholar 

  6. W.-J. Chen, Y.-Y. Ma, T.-T. Chen, M.-Z. Ao, D.-F. Yuan, Q. Chen, X.-X. Tian, Y.-W. Mu, S.-D. Li, and L.-S. Wang (2021). B48−: a bilayer boron cluster. Nanoscale 13, 3868–3876. https://doi.org/10.1039/D0NR09214B.

    Article  CAS  PubMed  Google Scholar 

  7. T. B. Tai and M. T. Nguyen (2015). The B32 cluster has the most stable bowl structure with a remarkable heptagonal hole. Chem. Commun. 51, 7677–7680. https://doi.org/10.1039/C5CC01252J.

    Article  CAS  Google Scholar 

  8. E. Oger, N. R. M. Crawford, R. Kelting, P. Weis, M. M. Kappes, and R. Ahlrichs (2007). Boron cluster cations: transition from planar to cylindrical structures. Angew. Chem. Int. Edit. 46, 8503–8506. https://doi.org/10.1002/anie.200701915.

    Article  CAS  Google Scholar 

  9. T. B. Tai, N. M. Tam, and M. T. Nguyen (2012). Structure of boron clusters revisited, Bn with n=14–20. Chem. Phys. Lett. 530, 71–76. https://doi.org/10.1016/j.cplett.2012.01.039.

    Article  CAS  Google Scholar 

  10. T. B. Tai, N. M. Tam, and M. T. Nguyen (2012). The Boron conundrum: the case of cationic clusters Bn+ with n = 2–20. Theor. Chem. Acc. 131, 1–15. https://doi.org/10.1007/s00214-012-1241-8.

    Article  CAS  Google Scholar 

  11. X. Ma, S. Liu, and S. Huang (2017). Hydrogen adsorption and dissociation on the TM-doped (TM=Ti, Nb) Mg55 nanoclusters: A DFT study. Int. J. Hydrogen Energ. 42, 24797–24810. https://doi.org/10.1016/j.ijhydene.2017.08.086.

    Article  CAS  Google Scholar 

  12. F. Zhang, H. Zhang, W. Xin, P. Chen, Y. Hu, X. Zhang, and Y. Zhao (2020). Probing the structural evolution and electronic properties of divalent metal Be2Mgn clusters from small to medium-size. Sci. Rep. 10, 1–10. https://doi.org/10.1038/s41598-020-63237-8.

    Article  CAS  Google Scholar 

  13. H.-F. Li and H.-Q. Wang (2014). Probing the stability of neutral and anionic transition-metal-doped golden cage nanoclusters: M@Au16 (M = Sc, Ti, V). Phys. Chem. Chem Phys. 16, 244–254. https://doi.org/10.1039/C3CP53292E.

    Article  CAS  PubMed  Google Scholar 

  14. K. Tono, A. Terasaki, T. Ohta, and T. Kondow (2007). Photoelectron spectroscopy and density-functional calculations of silver cluster anions doped with a cobalt atom: size dependent sp–d interaction. Chem. Phys. Lett. 449, 276–281. https://doi.org/10.1016/j.cplett.2007.10.077.

    Article  CAS  Google Scholar 

  15. Y. R. Zhao, T. T. Bai, L. N. Jia, W. Xin, Y. F. Hu, X. S. Zheng, and S. T. Hou (2019). Probing the structural and electronic properties of neutral and anionic lanthanum-doped silicon clusters. J. Phys. Chem. C. 123, 28561–28568. https://doi.org/10.1021/acs.jpcc.9b07184.

    Article  CAS  Google Scholar 

  16. D. Bandyopadhyay (2019). Electronic structure and stability of anionic AuGen (n = 1–20) clusters and assemblies: a density functional modeling. Struct. Chem. 30, 955–963. https://doi.org/10.1007/s11224-018-1239-5.

    Article  CAS  Google Scholar 

  17. C.-G. Li, Z.-G. Shen, J. Zhang, J.-H. Gao, J.-J. Li, T. Sun, R.-J. Zhang, B.-Z. Ren, and Y.-F. Hu (2019). A comparative study of CunX (X = Sc, Y; n = 1–10) clusters based on the structures, and electronic and aromatic properties. New J. Chem. 43, 6597–6606. https://doi.org/10.1039/C9NJ00236G.

    Article  CAS  Google Scholar 

  18. Y.-W. Fan, H.-Q. Wang, and H.-F. Li (2020). Structural and electronic properties of exohedrally doped neutral silicon clusters LnSin (n = 5, 10; Ln = Sm, Eu, Yb). Phys. Chem. Chem. Phys. 22, 20545–20552. https://doi.org/10.1039/D0CP03754K.

    Article  CAS  PubMed  Google Scholar 

  19. D. T. T. Mai, L. V. Duong, T. B. Tai, and M. T. Nguyen (2016). Electronic structure and thermochemical parameters of the silicon-doped boron clusters BnSi, with n = 8–14, and their anions. J. Phys. Chem. A 120, 3623–3633. https://doi.org/10.1021/acs.jpca.6b00847.

    Article  CAS  PubMed  Google Scholar 

  20. L. Xie, W.-L. Li, C. Romanescu, X. Huang, and L.-S. Wang (2013). A photoelectron spectroscopy and density functional study of di-tantalum boride clusters: Ta2Bx− (x = 2–5). J. Chem. Phys. 138, 034308. https://doi.org/10.1063/1.4776769.

    Article  CAS  PubMed  Google Scholar 

  21. B. Wang, L. Xie, X.-J. Liu, W.-J. Chen, Y.-F. Zhang, and X. Huang (2018). Structural evolution and chemical bonding of diniobium boride clusters Nb2Bx–/0 (x = 1–6): hexagonal-bipyramidal Nb2B6–/0 species. Eur. J. Inorg. Chem. 2018, 940–950. https://doi.org/10.1002/ejic.201701278.

    Article  CAS  Google Scholar 

  22. Q. S. Li and Q. Jin (2004). Aromaticity of planar B5- anion in the MB5 (M = Li, Na, K, Rb, and Cs) and MB5+ (M = Be, Mg, Ca, and Sr) clusters. J. Phys. Chem. A 108, 855–860. https://doi.org/10.1021/jp036711b.

    Article  CAS  Google Scholar 

  23. Q. Xu, C. Liu, L. Yang, P. Jin, C. Tang, and Z. Chen (2016). Computational investigation on MBn (M = Li-Cs, Be-Ba, Sc-La and Ti; n = 28 and 38). J. Mol. Model 22, 1–11. https://doi.org/10.1007/s00894-016-3055-4.

    Article  CAS  Google Scholar 

  24. X. Dong, A. Das, W. Liang, M. Wang, and Z. Cui (2019). Stable global tubular boron clusters in Na2B18 and Na2B18−. RSC Adv. 9, 4665–4670. https://doi.org/10.1039/C8RA10123J.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. C. Liang, Y. Liu, H. Fu, Y. Ding, M. Gao, and H. Pan (2011). Li–Mg–N–H-based combination systems for hydrogen storage. J. Alloy Compd. 509, 7844–7853. https://doi.org/10.1016/j.jallcom.2011.04.123.

    Article  CAS  Google Scholar 

  26. C. Xia, C. Y. Kwok, and L. F. Nazar (2018). A high-energy-density lithium-oxygen battery based on a reversible four-electron conversion to lithium oxide. Science. 361, 777–781. https://doi.org/10.1126/science.aas9343.

    Article  CAS  PubMed  Google Scholar 

  27. F. Wang, O. Borodin, M. S. Ding, M. Gobet, J. Vatamanu, X. Fan, T. Gao, N. Eidson, Y. Liang, W. Sun, S. Greenbaum, K. Xu, and C. Wang (2018). Hybrid aqueous/non-aqueous electrolyte for safe and high-energy Li-ion batteries. Joule 2, 927–937. https://doi.org/10.1016/j.joule.2018.02.011.

    Article  CAS  Google Scholar 

  28. A. N. Alexandrova, A. I. Boldyrev, H.-J. Zhai, and L.-S. Wang (2005). Photoelectron spectroscopy and ab initio study of the doubly antiaromatic B62−dianion in the LiB6−cluster. J. Chem. Phys. 122, 054313. https://doi.org/10.1063/1.1839575.

    Article  CAS  Google Scholar 

  29. A. N. Alexandrova, H.-J. Zhai, L.-S. Wang, and A. I. Boldyrev (2004). Molecular wheel B82-as a new inorganic ligand. Photoelectron spectroscopy and ab initio characterization of LiB8-. Inorg. Chem. 43, 3552–3554. https://doi.org/10.1021/ic049706a.

    Article  CAS  PubMed  Google Scholar 

  30. L. I. U. Li-Ren, L. E. I. Xue-Ling, C. H. E. N. Hang, and Z. H. U. Heng-Jiang (2009). Geometry and electronie properties of Bn-1 Li(n = 2–13) clusters. J Atom Mol Phys. 26, 474–482.

    Google Scholar 

  31. M. Yousofizadeh, E. Shakerzadeh, and M. Bamdad (2017). Electronic and nonlinear optical characteristics of the LiBn (n=4–11) nanoclusters: a theoretical study. Microelectron Eng. 183–184, 64–68. https://doi.org/10.1016/j.mee.2017.10.011.

    Article  CAS  Google Scholar 

  32. X. Dong, S. Jalife, A. Vásquez-Espinal, E. Ravell, S. Pan, J. L. Cabellos, W. Liang, Z. Cui, and G. Merino (2018). Li2B12 and Li3B12: prediction of the smallest tubular and cage-like boron structures. Angew. Chem. Int. Ed. 57, 4627–4631. https://doi.org/10.1002/anie.201800976.

    Article  CAS  Google Scholar 

  33. X. Dong, S. Jalife, A. Vásquez-Espinal, J. Barroso, M. Orozco-Ic, E. Ravell, J. L. Cabellos, W. Liang, Z. Cui, and G. Merino (2019). Li2B24: the simplest combination for a three-ring boron tube. Nanoscale 11, 2143–2147. https://doi.org/10.1039/C8NR09173K.

    Article  CAS  PubMed  Google Scholar 

  34. W. U. Yong-Bo, G. A. N. Ya-Ling, C. H. E. N. Shi-Ting, C. H. E. N. Yin-Kun, and R. U. A. N. Wen (2020). The structures and hydrogen storage properties of Li atoms decorated one dimensional hexagonal borene chain clusters. J. Jinggangshan Univ. (Nat. Sci. Ed.) 41, 1–7.

    Google Scholar 

  35. M. Li, Y. Li, Z. Zhou, P. Shen, and Z. Chen (2009). Ca-coated boron fullerenes and nanotubes as superior hydrogen storage materials. Nano Lett. 9, 1944–1948. https://doi.org/10.1021/nl900116q.

    Article  CAS  PubMed  Google Scholar 

  36. Y. Wang, J. Lv, L. Zhu, and Y. Ma (2010). Crystal structure prediction via particle-swarm optimization. Phys. Rev. B 82, 094116. https://doi.org/10.1103/PhysRevB.82.094116.

    Article  CAS  Google Scholar 

  37. Y. Wang, J. Lv, L. Zhu, and Y. Ma (2012). CALYPSO: A method for crystal structure prediction. Comput. Phys. Commun. 183, 2063–2070. https://doi.org/10.1016/j.cpc.2012.05.008.

    Article  CAS  Google Scholar 

  38. J. Lv, Y. Wang, L. Zhu, and Y. Ma (2012). Particle-swarm structure prediction on clusters. J. Chem. Phys. 137, 084104. https://doi.org/10.1063/1.4746757.

    Article  CAS  PubMed  Google Scholar 

  39. M. E. Casida, C. Jamorski, K. C. Casida, and D. R. Salahub (1998). Molecular excitation energies to high-lying bound states from time-dependent density-functional response theory: characterization and correction of the time-dependent local density approximation ionization threshold. J. Chem. Phys. 108, 4439–4449. https://doi.org/10.1063/1.475855.

    Article  CAS  Google Scholar 

  40. C. Lu and C. Chen (2021). Indentation strengths of zirconium diboride: intrinsic versus extrinsic mechanisms. J. Phys. Chem. Lett. 12, 2848–2853. https://doi.org/10.1021/acs.jpclett.1c00434.

    Article  CAS  PubMed  Google Scholar 

  41. C. Lu, W. Gong, Q. Li, and C. Chen (2020). Elucidating stress-strain relations of ZrB12 from first-principles studies. J. Phys. Chem. Lett. 11, 9165–9170. https://doi.org/10.1021/acs.jpclett.0c02656.

    Article  CAS  PubMed  Google Scholar 

  42. Z. Li, Z. Zhao, X. Shen, and Q. Wang (2020). The selectivity of the transition metal encapsulated in fullerene-like B36 clusters. Chem. Phys. Lett. 757, 137876. https://doi.org/10.1016/j.cplett.2020.137876.

    Article  CAS  Google Scholar 

  43. B. Chen, L. J. Conway, W. Sun, X. Kuang, C. Lu, and A. Hermann (2021). Phase stability and superconductivity of lead hydrides at high pressure. Phys. Rev. B 103, 035131. https://doi.org/10.1103/PhysRevB.103.035131.

    Article  CAS  Google Scholar 

  44. L.-P. Ding, L. T. Yang, P. Shao, Y. H. Tiandong, F.-H. Zhang, and C. Lu (2020). Structures, mobilities, and electronic properties of functionalized silicene: superhalogen BO2 adsorption. Inorg. Chem. 59, 5041–5049. https://doi.org/10.1021/acs.inorgchem.0c00268.

    Article  CAS  PubMed  Google Scholar 

  45. Y. Zhao, Y. Xu, P. Chen, Y. Yuan, Y. Qian, and Q. Li (2021). Structural and electronic properties of medium-sized beryllium doped magnesium BeMgn clusters and their anions. Results Phys. 26, 104341. https://doi.org/10.1016/j.rinp.2021.104341.

    Article  Google Scholar 

  46. C. Li, H. Li, Y. Cui, H. Tian, Q. Shao, J. Zhang, G. Zhao, B. Ren, and Y. Hu (2021). A density functional investigation on the structures, electronic, spectral and fluxional properties of VB20- cluster. J. Mol. Liq. 339, 116764. https://doi.org/10.1016/j.molliq.2021.116764.

    Article  CAS  Google Scholar 

  47. C.-G. Li, Z.-G. Shen, J. Zhang, Y.-Q. Cui, J.-J. Li, H.-Y. Xue, H.-F. Li, B.-Z. Ren, and Y.-F. Hu (2020). Analysis of the structures, stabilities and electronic properties of MB16− (M = V, Cr, Mn, Fe Co, Ni) clusters and assemblies. New J. Chem. 44, 5109–5119. https://doi.org/10.1039/C9NJ06335H.

    Article  CAS  Google Scholar 

  48. S. Jin, B. Chen, X. Kuang, C. Lu, W. Sun, X. Xia, and G. L. Gutsev (2019). Structural and electronic properties of medium-sized aluminum-doped boron clusters AlBn and their anions. J. Phys. Chem. C 123, 6276–6283. https://doi.org/10.1021/acs.jpcc.9b00291.

    Article  CAS  Google Scholar 

  49. B. Chen, W. Sun, X. Kuang, G. L. Gutsev, and C. Lu (2020). Modification of geometric and electronic structures of iron clusters by nitrogen: Fe8– vs Fe8N–. J. Phys. Chem. C 124, 3867–3872. https://doi.org/10.1021/acs.jpcc.9b10916.

    Article  CAS  Google Scholar 

  50. L. Chen, J. Xu, M. Zhang, Z. Wen, and Z. Jiang (2020). Structural, mechanical and electronic properties study on group 5 transition metals ternary mononitrides from first-principles calculations. J. Alloy Compd. 813, 152246. https://doi.org/10.1016/j.jallcom.2019.152246.

    Article  CAS  Google Scholar 

  51. L. Lai, D. Die, B.-X. Zheng, and Q. Du (2021). Growth mechanism and electronic and magnetic properties of AgnTi alloy clusters. J. Phys. Chem. Solids 148, 109757. https://doi.org/10.1016/j.jpcs.2020.109757.

    Article  CAS  Google Scholar 

  52. J. D. Dill and J. A. Pople (1975). Self-consistent molecular orbital methods. XV. Extended Gaussian-type basis sets for lithium, beryllium, and boron. J. Chem. Phys. 62, 2921–2923. https://doi.org/10.1063/1.430801.

    Article  CAS  Google Scholar 

  53. Gordon, M.S., Binkley, J.S., Pople, J.A., Pietro, W.J., Hehre, W.J.: Self-consistent molecular-orbital methods. 22. Small split-valence basis sets for second-row elements, https://pubs.acs.org/doi/pdf/https://doi.org/10.1021/ja00374a017

  54. R. Krishnan, J. S. Binkley, R. Seeger, and J. A. Pople (1980). Self-consistent molecular orbital methods. XX. A basis set for correlated wave functions. J. Chem. Phys. 72, 650–654. https://doi.org/10.1063/1.438955.

    Article  CAS  Google Scholar 

  55. A. D. McLean and G. S. Chandler (1980). Contracted Gaussian basis sets for molecular calculations. I. Second row atoms, Z=11–18. J. Chem. Phys. 72, 5639–5648. https://doi.org/10.1063/1.438980.

    Article  CAS  Google Scholar 

  56. S. Đorđević and S. Radenković (2020). Singlet and triplet states of the sandwich-type Be2B6 and Be2B7+ clusters. A test for the electron counting rules of aromaticity. New J. Chem. 44, 19780–19788. https://doi.org/10.1039/D0NJ04643D.

    Article  Google Scholar 

  57. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, and G. A. Petersson, Gaussian 09 Revision A. 1, vol. 66. (Gaussian Inc, Wallingford CT, 2009), p. 219.

    Google Scholar 

  58. L. Wen, G. Li, L.-M. Yang, and E. Ganz (2020). Structural evolution in boron-based clusters B5Aln0/-/+ (n = 1–4): Al atoms transition from the periphery of the planar W-shaped B5 ring to the vertex of the bipyramid. Eur. Phys. J. D 74, 223. https://doi.org/10.1140/epjd/e2020-10409-8.

    Article  CAS  Google Scholar 

  59. R.-N. Zhao, R. Chen, F. Gu, Y.-H. Yuan, and J.-G. Han (2016). A density functional computational investigation on electronic properties of the stable irregular boron fullerenes with 20–56 atoms. Int. J. Quantum Chem. 116, 421–427. https://doi.org/10.1002/qua.25056.

    Article  CAS  Google Scholar 

  60. H. Bai, H.-J. Zhai, S.-D. Li, and L.-S. Wang (2013). Photoelectron spectroscopy of aromatic compound clusters of the B12 all-boron benzene: B12Au− and B12(BO)−. Phys. Chem. Chem. Phys. 15, 9646–9653. https://doi.org/10.1039/C3CP50167A.

    Article  CAS  PubMed  Google Scholar 

  61. W.-J. Tian, W.-J. Chen, M. Yan, R. Li, Z.-H. Wei, T.-T. Chen, Q. Chen, H.-J. Zhai, S.-D. Li, and L.-S. Wang (2021). Transition-metal-like bonding behaviors of a boron atom in a boron-cluster boronyl complex [(η 7-B 7)-B-BO]−. Chem. Sci. 12, 8157–8164. https://doi.org/10.1039/D1SC00534K.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. I. A. Popov, T. Jian, G. V. Lopez, A. I. Boldyrev, and L.-S. Wang (2015). Cobalt-centred boron molecular drums with the highest coordination number in the CoB16−cluster. Nat. Commun. 6, 8654. https://doi.org/10.1038/ncomms9654.

    Article  CAS  PubMed  Google Scholar 

  63. T. Lu and F. Chen (2012). Multiwfn: a multifunctional wavefunction analyzer. J Comput. Chem. 33, 580–592. https://doi.org/10.1002/jcc.22885.

    Article  CAS  PubMed  Google Scholar 

  64. Reed, A.E., Curtiss, L.A., Weinhold, F.: Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint, https://pubs.acs.org/doi/pdf/https://doi.org/10.1021/cr00088a005

  65. S. Alexander and R. Orbach (1982). Density of states on fractals : « fractons ». J. Phyique Lett. 43, 625–631. https://doi.org/10.1051/jphyslet:019820043017062500.

    Article  Google Scholar 

  66. H. Jacobsen (2008). Localized-orbital locator (LOL) profiles of chemical bonding. Can. J. Chem. 86, 695–702. https://doi.org/10.1139/v08-052.

    Article  CAS  Google Scholar 

  67. D. Y. Zubarev and A. I. Boldyrev (2008). ”Developing paradigms of chemical bonding: adaptive natural density partitioning. Phys. Chem. Chem. Phys. 10, 5207–5217. https://doi.org/10.1039/B804083D.

    Article  CAS  PubMed  Google Scholar 

  68. T. B. Tai, D. J. Grant, M. T. Nguyen, and D. A. Dixon (2010). Thermochemistry and electronic structure of small boron clusters (Bn, n = 5–13) and their anions. J. Phys. Chem. A 114, 994–1007. https://doi.org/10.1021/jp9085848.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Innovation Fund of Postgraduate Sichuan University of Science & Engineering (Grant No. y2021008, Y2022013, Y2022014), the Cultivating Program of Young and Middle-aged Backbone Teachers of Chengdu University of Technology (No. 10912-JXGG2022-09146), and the Innovation and Entrepreneurship Training Program of Sichuan Province (Grant No. S202110622032). This work was supported by Sichuan University of Science & Engineering High Performance Computing Center provided computational.

Author information

Authors and Affiliations

Authors

Contributions

TXH: investigation, writing–original draft. YQY: investigation, writing–review & editing. JJD: investigation, visualization. YYL: super&vision, funding acquisition. QYL: supervision, funding acquisition. GLC: conceptualization, funding acquisition. WL: super&vision, funding acquisition: investigation, software.

Corresponding authors

Correspondence to Yu Quan Yuan or Jun Jie Ding.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, T.X., Yuan, Y.Q., Ding, J.J. et al. Probing the Structural Evolution, Stabilities and Properties of LiBn (n = 2–12) Clusters. J Clust Sci 34, 2811–2821 (2023). https://doi.org/10.1007/s10876-023-02428-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-023-02428-5

Keywords

Navigation