Skip to main content
Log in

Visible Light Driven Photocatalytic Degradation of Norfloxacin Using 3D Supramolecular Compounds

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

In this paper, two new compounds {[L1]·[Cu3(SCN)7]·H2O 1 and {[L1]·[Ag2(SCN)6]·H2O} 2 were obtained by the reaction of a novel cationic template L1 with CuSCN and AgSCN, respectively. The two new compounds were characterized by IR, UV–Vis, elemental analysis, powder X-ray diffraction (PXRD) and thermogravimetric analysis (TG). The photocatalytic degradation effects of compounds 1 and 2 on TC and NOR in solution were also studied, the results showed that the degradation efficiency of compound 1 was always higher than that of compound 2. And compound 1 was taken as an example to explore the factors affecting photocatalytic degradation and catalyst cycle. The photocatalytic mechanism of compound 1 was also revealed. And it was found that compound 1 had good degradation effect on norfloxacin and was expected to become a potential high-efficiency photocatalyst. Finally, the fluorescence response to various metal ions was studied, and it was found that they had obvious recognition effect on Fe3+.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. S. Q. Zhao and J. Z. Gu (2021). Chin J. Inorg. Chem. 37 (4), 751–757.

    CAS  Google Scholar 

  2. S. Q. Zhao and J. Z. Gu (2022). Chin J. Inorg. Chem. 38 (1), 161–170.

    CAS  Google Scholar 

  3. M. Nagamine, M. Osial, K. Jackowska, P. Krysinski, and J. Widera-Kalinowska (2020). J. Mar. Sci. Eng. 8 (7), 82–92.

    Article  Google Scholar 

  4. C. Wang, C. Y. Lin, and G. Y. Liao (2020). J. Water Process. Eng. 37, 92–96.

    Google Scholar 

  5. J. Zhang, D. Fu, and J. Wu (2012). J. Environ. Sci. 24 (4), 743–749.

    Article  CAS  Google Scholar 

  6. S. Babic, M. Perisa, and I. Skoric (2013). Chemosphere 91 (11), 1635–1642.

    Article  CAS  PubMed  Google Scholar 

  7. S. Nekouei and F. Nekouei (2018). Appl. Organomet. Chem. 32 (9), 4418–4428.

    Article  Google Scholar 

  8. M. Malček, J. Kožíšková, P. Herich, P. Rapta, I. Stepanenko, and V. B. Arion (2020). New J. Chem. 44 (30), 13195–13206.

    Article  Google Scholar 

  9. M. Niu, C. Sun, K. Zhang, G. Li, F. Meriem, C. Pham-Huy, X. Hui, J. Shi, and H. He (2017). New J. Chem. 41 (7), 2614–2624.

    Article  CAS  Google Scholar 

  10. J. Xu, Z. Ren, X. Qiu, P. Zhu, D. Chen, L. Xie, and C. Zhang (2021). ChemistrySelect 6 (29), 7295–7305.

    Article  CAS  Google Scholar 

  11. P. Xerras, A. M. Bacharidou, S. Kalogiannis, F. Perdih, M. V. Kirillova, A. M. Kirillov, I. Turel, and G. Psomas (2018). New J. Chem. 42 (24), 19644–19658.

    Article  CAS  Google Scholar 

  12. S. Kar, S. Ibrahim, T. Pal, and S. Ghosh (2020). ChemistrySelect 5 (1), 54–60.

    Article  CAS  Google Scholar 

  13. P. Saxena, I. Hiwrale, S. Das, V. Shukla, L. Tyagi, S. Pal, N. Dafale, and R. Dhodapkar (2021). J Hazard Mater 408, 124877–124880.

    Article  CAS  PubMed  Google Scholar 

  14. R. Wang, M. Ji, H. Zhai, Y. Guo, and Y. Liu (2021). Sci. Total Environ. 796, 148919–148922.

    Article  CAS  PubMed  Google Scholar 

  15. W. Li, C. Guo, B. Su, and J. Xu (2012). J. Chem. Technol. Biotechnol. 87 (5), 643–650.

    Article  CAS  Google Scholar 

  16. S. W. Lv, J. M. Liu, N. Zhao, C. Y. Li, Z. H. Wang, and S. Wang (2020). New J. Chem. 44 (4), 1245–1252.

    Article  CAS  Google Scholar 

  17. S. Raju, M. Carbery, A. Kuttykattil, K. Senthirajah, A. Lundmark, Z. Rogers, S. Scb, G. Evans, and T. Palanisami (2020). Water Res. 173, 115549–115552.

    Article  CAS  PubMed  Google Scholar 

  18. D. P. Ghumra, C. Agarkoti, and P. R. Gogate (2021). Process Saf. Environ. Prot. 147, 1018–1051.

    Article  CAS  Google Scholar 

  19. V. R. Moreira, Y. A. R. Lebron, C. F. Couto, A. Maia, W. G. Moravia, and M. C. S. Amaral (2022). Process Saf. Environ. Prot. 157, 537–546.

    Article  CAS  Google Scholar 

  20. W. Remache, D. R. Ramos, L. Mammeri, H. Boucheloukh, Z. Marín, S. Belaidi, T. Sehili, J. A. Santaballa, and M. Canle (2022). J. Water Process. Eng. 46, 102514–102518.

    Article  Google Scholar 

  21. J. Zhao, Y. Wu, S. Zhou, L. Yan, H. Dong, L. Chen, M. Meng, C. Li, and Y. Yan (2017). New J. Chem. 41 (24), 14966–14976.

    Article  CAS  Google Scholar 

  22. Y. Fang, Y. Li, F. Zhou, P. Gu, J. Liu, D. Chen, N. Li, Q. Xu, and J. Lu (2019). ChemPlusChem 84 (5), 474–480.

    Article  CAS  PubMed  Google Scholar 

  23. H. Hennig (2015). Angew. Chem. Int. Ed. 54 (15), 4429–4429.

    Article  CAS  Google Scholar 

  24. C. N. R. Rao and S. R. Lingampalli (2016). Small 12 (1), 16–23.

    Article  CAS  PubMed  Google Scholar 

  25. H. Yu, R. Shi, Y. Zhao, G. I. N. Waterhouse, L. Z. Wu, C. H. Tung, and T. Zhang (2016). Adv. Mater. 28 (43), 9454–9477.

    Article  CAS  PubMed  Google Scholar 

  26. Y. Y. Liu, J. Liu, L. Q. Lu, and W. J. Xiao (2019). Top Curr Chem (Cham) 377 (6), 37–40.

    Article  PubMed  Google Scholar 

  27. R. Vicente, J. Soler, A. Arques, A. M. Amat, Z. Frontistis, N. Xekoukoulotakis, and D. Mantzavinos (2014). J. Chem. Technol. Biotechnol. 89 (8), 1259–1264.

    Article  CAS  Google Scholar 

  28. M. Ruokolainen, E. Ollikainen, T. Sikanen, T. Kotiaho, and R. Kostiainen (2016). J. Am. Chem. Soc. 138 (24), 7452–7455.

    Article  CAS  PubMed  Google Scholar 

  29. H. Nishikiori, S. Matsunaga, M. Iwasaki, N. Zettsu, M. Yamakawa, A. Kikuchi, T. Yamakami, and K. Teshima (2019). Appl. Catal. B 241, 299–304.

    Article  CAS  Google Scholar 

  30. F. Xu, H. Tan, J. Fan, B. Cheng, J. Yu, and J. Xu (2021). Solar RRL 5 (6), 200–204.

    Google Scholar 

  31. H. Kisch and W. Macyk (2002). ChemPhysChem 3 (5), 399–400.

    Article  CAS  PubMed  Google Scholar 

  32. S. Sakthivel and H. Kisch (2003). Angew. Chem. Int. Ed. 42 (40), 4908–4911.

    Article  CAS  Google Scholar 

  33. H. Kisch (2013). Angew. Chem. Int. Ed. 52 (3), 812–847.

    Article  CAS  Google Scholar 

  34. M. Nasr, C. Eid, R. Habchi, P. Miele, and M. Bechelany (2018). ChemSusChem 11 (18), 3023–3047.

    Article  CAS  PubMed  Google Scholar 

  35. J. Zhang, Z. Wang, L. Liu, B. Hu, Y. Zhao, S. Zhao, W. Zhao, S. Li, X. Chen, and X. Hai (2021). Cryst. Res. Technol. 56 (7), 2000240–2000245.

    Article  CAS  Google Scholar 

  36. P. Chen, H. Liu, W. Cui, S. C. Lee, L. Wang, and F. Dong (2020). EcoMat 2 (3), 12047–12049.

    Article  Google Scholar 

  37. J. Jia, P. Xue, R. Wang, X. Bai, X. Hu, J. Fan, and E. Liu (2018). J. Chem. Technol. Biotechnol. 93 (10), 2988–2999.

    Article  CAS  Google Scholar 

  38. Z. Frontistis, D. Fatta-Kassinos, D. Mantzavinos, and N. P. Xekoukoulotakis (2012). J. Chem. Technol. Biotechnol. 87 (8), 1051–1058.

    Article  CAS  Google Scholar 

  39. M. I. Din, J. Najeeb, and G. Ahmad (2017). Sep. Purif. Rev. 47 (4), 267–287.

    Article  Google Scholar 

  40. L. Cheng, Q. Xiang, Y. Liao, and H. Zhang (2018). Energy Environ. Sci. 11 (6), 1362–1391.

    Article  CAS  Google Scholar 

  41. Q. Sun, N. Wang, J. Yu, and J. C. Yu (2018). Adv. Mater. 30 (45), 1804–1809.

    Article  Google Scholar 

  42. K. Yang, Z. Yang, C. Zhang, Y. Gu, J. Wei, Z. Li, C. Ma, X. Yang, K. Song, Y. Li, Q. Fang, and J. Zhou (2021). Chem. Eng. J. 418, 213–220.

    Google Scholar 

  43. J. Wang, Z. Chen, G. Zhai, and Y. Men (2018). Appl. Surf. Sci. 462, 760–771.

    Article  CAS  Google Scholar 

  44. M. Sachs, J. S. Park, E. Pastor, A. Kafizas, A. A. Wilson, L. Francas, S. Gul, M. Ling, C. Blackman, J. Yano, A. Walsh, and J. R. Durrant (2019). Chem. Sci 10 (22), 5667–5677.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. M. Aslam, M. T. Qamar, S. Ali, A. U. Rehman, M. T. Soomro, I. Ahmed, I. M. Ismail, and A. Hameed (2018). J. Environ. Manage. 217, 805–814.

    Article  CAS  PubMed  Google Scholar 

  46. C. Sun, J. Yang, M. Xu, Y. Cui, W. Ren, J. Zhang, H. Zhao, and B. Liang (2022). Chem. Eng. J. 427, 135–139.

    Google Scholar 

  47. C. Karunakaran, R. Dhanalakshmi, and P. Gomathisankar (2009). Int. J. Chem. Kinet. 41 (11), 716–726.

    Article  CAS  Google Scholar 

  48. F. Opoku, K. K. Govender, C. G. Sittert, and P. P. Govender (2017). Adv. Sustain. Syst. 1 (7), 1700006–1700010.

    Article  Google Scholar 

  49. J. Di, J. Xiong, H. Li, and Z. Liu (2018). Adv. Mater. 30 (1), 1704548–1704550.

    Article  Google Scholar 

  50. M. Zheng, I. Ghosh, B. König, and X. Wang (2019). ChemCatChem 11 (2), 703–706.

    Article  CAS  Google Scholar 

  51. L. Xie, Q. Zhu, G. Zhang, K. Ye, C. Zou, O. V. Prezhdo, Z. Wang, Y. Luo, and J. Jiang (2020). J. Am. Chem. Soc. 142 (9), 4136–4140.

    Article  CAS  PubMed  Google Scholar 

  52. J. Jiang, H. Li, and L. Zhang (2012). Chem. Eur. J. 18 (20), 6360–6369.

    Article  CAS  PubMed  Google Scholar 

  53. X. Meng, L. Liu, S. Ouyang, H. Xu, D. Wang, N. Zhao, and J. Ye (2016). Adv. Mater. 28 (32), 6781–6803.

    Article  CAS  PubMed  Google Scholar 

  54. F. Wang, Q. Li, and D. Xu (2017). Adv. Energy Mater. 7 (23), 1700529–1799532.

    Article  Google Scholar 

  55. E. E. Elemike, D. C. Onwudiwe, L. Wei, L. Chaogang, and Z. Zhiwei (2019). Sol. Energy Mater. Sol. Cells 201, 110–117.

    Article  Google Scholar 

  56. L. Huang, X. Liu, H. Wu, X. Wang, H. Wu, R. Li, L. Shi, and C. Li (2020). J. Mater. Chem. A 8 (40), 21094–21102.

    Article  CAS  Google Scholar 

  57. M. Meilikhov, K. Yusenko, D. Esken, S. Turner, G. Van Tendeloo, and R. A. Fischer (2010). Eur. J. Inorg. Chem. 2010 (24), 3701–3714.

    Article  Google Scholar 

  58. F. Ambroz, T. J. Macdonald, V. Martis, and I. P. Parkin (2018). Small Methods 2 (11), 1800173–1800176.

    Article  Google Scholar 

  59. M. Y. Masoomi, A. Morsali, A. Dhakshinamoorthy, and H. Garcia (2019). Angew. Chem. 131 (43), 15330–15347.

    Article  Google Scholar 

  60. X. Qiao, C. Wang, and Y. Niu (2020). J Hazard Mater 391, 122121–122126.

    Article  CAS  PubMed  Google Scholar 

  61. X. Wang, G. Zhu, C. Wang, and Y. Niu (2021). Environ. Res. 198, 111253–111258.

    Article  CAS  PubMed  Google Scholar 

  62. D. Dong, B. Zhou, Y. Sun, H. Zhang, G. Zhong, Q. Dong, F. Fu, H. Qian, Z. Lin, D. Lu, Y. Shen, J. Wu, L. Chen, and H. Chen (2019). Nano Lett. 19 (4), 2343–2349.

    Article  CAS  PubMed  Google Scholar 

  63. L. Li, J. M. Yue, Y. Z. Qiao, Y. Y. Niu, and H. W. Hou (2013). CrystEngComm 15 (19), 3835–3839.

    Article  CAS  Google Scholar 

  64. C. H. Wang, L. Li, H. J. Du, W. L. Zhang, Y. Li, Y. Y. Niu, and Y. Fu (2015). Inorg. Chim. Acta 437, 1–10.

    Article  CAS  Google Scholar 

  65. R. Mazzoni, F. Roncaglia, and L. Rigamonti (2021). Crystals 11 (5), 483–487.

    Article  CAS  Google Scholar 

  66. H. Krautscheid and S. Gerber (1999). Z. Anorg. Allg. Chem. 625 (12), 2041–2044.

    Article  CAS  Google Scholar 

  67. H. Zhang, X. Wang, K. Zhang, and B. K. Teo (1999). Coord. Chem. Rev. 183, 157–195.

    Article  CAS  Google Scholar 

  68. H. Zhang, X. Wang, H. Zhu, W. Xiao, K. Zhang, and B. K. Teo (1999). Inorg. Chem. 38, 886–892.

    Article  CAS  PubMed  Google Scholar 

  69. H. Zhang, X. Wang, H. Zhu, and B. K. Teo (1997). J. Am. Chem. Soc. 119, 5463–5464.

    Article  CAS  Google Scholar 

  70. S. Manigandan, A. Muthusamy, R. Nandhakumar, and C. Immanuel David (2020). J. Mol. Struct. 1208, 290–296.

    Article  Google Scholar 

  71. T. Zhang, A. Salah, S. Chang, Z. Zhang, and G. Wang (2021). Tetrahedron 96, 120–126.

    Article  Google Scholar 

  72. X. Sun, S. Yao, C. Yu, G. Li, C. Liu, Q. Huo, and Y. Liu (2018). J. Mater. Chem. A 6 (15), 6363–6369.

    Article  CAS  Google Scholar 

  73. D. Wu, L. Chen, W. Lee, G. Ko, J. Yin, and J. Yoon (2018). Coord. Chem. Rev. 354, 74–97.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We sincerely thank the National Science Foundation of China (No. 21671177) for funding the research work on Niu group.

Funding

This study is supported by the National Natural Science Foundation of China (No. 21671177).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yunyin Niu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 583 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, X., Wang, X. & Niu, Y. Visible Light Driven Photocatalytic Degradation of Norfloxacin Using 3D Supramolecular Compounds. J Clust Sci 34, 2643–2652 (2023). https://doi.org/10.1007/s10876-023-02412-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-023-02412-z

Keywords

Navigation