Skip to main content
Log in

Design, Synthesis, Characterization, Anti-Microbial, Anti-Oxidant, DNA, HSA, Cytotoxicity and Anti-Inflammatory Studies of Nitrogen-Substituted Chrysin Derivatives and Metal(II) Complexes

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

A novel chrysin derivatives of ligand has been synthesized by the condensation of n-pentyl amine, pyrrole and substituent 3-aminonaphthalene-2-ol and its Co(II), Ni(II), Cu(II) and Zn(II) complexes have been reported. The ligands and its metal complexes have been structurally characterized using a variety of spectroscopic [UV–Vis, IR, NMR, ESR, Mass, XPRD], thermal (TGA) and other physicochemical techniques. For in vitro antibacterial activity, all the produced compounds have been evaluated. Additionally, the compounds have been used in antioxidant investigations. UV–Vis spectroscopy, Fluorescence quenching and viscosity measurements techniques were used to examine the binding affinity of complexes with DNA and Human Serum Albumin (HSA). As a result of the gathered data, it was discovered that DNA and HSA had a preference for the following complexes: Cu-L > Zn-L > Co-L > Ni-L and Ni-L > Cu-L > Zn-L > Co-L. The complexes were further tested for their in vitro anticancer activity against the cell lines (HeLa & MCF-7) and the findings obtained suggest that they demonstrate an effective anticancer activity. The metal complexes performed various biochemical assay techniques for anti-inflammatory and anti-tubercular studies.

Graphical Abstract

A series of chrysin derivatives of ligand and their corresponding metal(II) complexes of general formula: [M-L(OAc)] were synthesized and characterized using spectroscopic techniques. The hetero-bimetalic complexes show moderate biological activity and catalyst precursors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3
Fig. 1
Fig. 2
Scheme 4
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Scheme 5

Similar content being viewed by others

References

  1. A. N. Panche, A. D. Diwan, and S. R. Chandra (2016). Flavonoids: an overview. J Nutr Sci. https://doi.org/10.1017/jns.2016.41.

    Article  PubMed  PubMed Central  Google Scholar 

  2. X. Luo, X. Yu, S. Liu, Q. Deng, X. Liu, S. Peng, and Y. Cao (2015). The role of targeting kinase activity by natural products in cancer chemoprevention and chemotherapy (review). Oncol. Rep. 34 (2), 547–554. https://doi.org/10.3892/or.2015.4029.

    Article  CAS  PubMed  Google Scholar 

  3. Y. Cao, R. A. DePinho, M. Ernst, and K. Vousden (2011). Cancer research: past, present and future. Nat. Rev. Cancer 11 (10), 749–754. https://doi.org/10.1038/nrc3138.

    Article  CAS  PubMed  Google Scholar 

  4. Y. Ding, et al. (2017). Flavonoids from persimmon (Diospyros kaki L.) leaves inhibit proliferation and induce apoptosis in PC-3 cells by activation of oxidative stress and mitochondrial apoptosis. Chemico-Biol. Interact. 275, 210–217. https://doi.org/10.1016/j.cbi.2017.07.026.

    Article  CAS  Google Scholar 

  5. J. Dai, P. G. Van Wie, L. Y. Fai, D. Kim, L. Wang, P. Poyil, and Z. Zhang (2016). Downregulation of NEDD9 by apigenin suppresses migration, invasion, and metastasis of colorectal cancer cells. Toxicol. Appl. Pharmacol. 311, 106–112. https://doi.org/10.1016/j.taap.2016.09.016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. K. Zhao, X. Li, B. Lin, D. Yang, Y. Zhou, Z. Li, and N. Lu (2017). Oroxyloside inhibits angiogenesis through suppressing internalization of VEGFR2/Flk-1 in endothelial cells. J. Cell. Physiol. 233 (4), 3454–3464. https://doi.org/10.1002/jcp.26198.

    Article  CAS  PubMed  Google Scholar 

  7. F. T. Awan, J. A. Jones, K. Maddocks, M. Poi, M. R. Grever, A. Johnson, and L. A. Andritsos (2016). A phase 1 clinical trial of flavopiridol consolidation in chronic lymphocytic leukemia patients following chemoimmunotherapy. Ann. Hematol. 95 (7), 1137–1143. https://doi.org/10.1007/s00277-016-2683-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. C. H. Lee, O. K. Park, K.-Y. Yoo, K. Byun, B. Lee, J. H. Choi, and M.-H. Won (2011). The role of peroxisome proliferator-activated receptor γ, and effects of its agonist, rosiglitazone, on transient cerebral ischemic damage. J. Neurol. Sci. 300 (1–2), 120–129. https://doi.org/10.1016/j.jns.2010.09.005.

    Article  CAS  PubMed  Google Scholar 

  9. M. Maeda-Yamamoto, K. Ema, M. Monobe, Y. Tokuda, and H. Tachibana (2012). Epicatechin-3-O-(3″-O-methyl)-gallate content in various tea cultivars (Camellia sinensis L) and its in vitro inhibitory effect on histamine release. J. Agric. Food Chem. 60 (9), 2165–2170. https://doi.org/10.1021/jf204497b.

    Article  CAS  PubMed  Google Scholar 

  10. G. Santana-Rios, G. A. Orner, A. Amantana, C. Provost, S.-Y. Wu, and R. H. Dashwood (2001). Potent antimutagenic activity of white tea in comparison with green tea in the Salmonella assay. Mutation Res/Genet. Toxicol. Environ. Mutagen. 495 (1–2), 61–74. https://doi.org/10.1016/s1383-5718(01)00200-5.

    Article  CAS  Google Scholar 

  11. M. Coleta, M. G. Campos, M. D. Cotrim, T. C. M. de Lima, and A. P. da Cunha (2008). Assessment of luteolin (3′,4′,5,7-tetrahydroxyflavone) neuropharmacological activity. Behav. Brain Res. 189 (1), 75–82. https://doi.org/10.1016/j.bbr.2007.12.010.

    Article  CAS  PubMed  Google Scholar 

  12. S. Geeth Vincent, R. R. Krishna Jyothi, and J. Joseph (2020). Novel metal complexes of flavone Schiff base: synthesis, characterization, antioxidant and DNA binding studies. Mater Today: Proc. https://doi.org/10.1016/j.matpr.2020.03.141.

    Article  Google Scholar 

  13. M. Hanif and Z. H. Chohan (2013). Design, spectral characterization and biological studies of transition metal(II) complexes with triazole Schiff bases. Spectrochim. Acta A: Mol. Biomol. Spectrosc. 104, 468–476. https://doi.org/10.1016/j.saa.2012.11.077.

    Article  CAS  PubMed  Google Scholar 

  14. W. Al Zoubi, A. A. S. Al-Hamdani, and M. Kaseem (2016). Synthesis and antioxidant activities of Schiff bases and their complexes: a review. Appl. Organometal. Chem. 30 (10), 810–817. https://doi.org/10.1002/aoc.3506.

    Article  CAS  Google Scholar 

  15. C. Liang, J. Xia, D. Lei, X. Li, Q. Yao, and J. Gao (2014). Synthesis, in vitro and in vivo antitumor activity of symmetrical bis-Schiff base derivatives of isatin. Eur. J. Med. Chem. 74, 742–750. https://doi.org/10.1016/j.ejmech.2013.04.040.

    Article  CAS  PubMed  Google Scholar 

  16. X. Qiao, Z.-Y. Ma, C.-Z. Xie, F. Xue, Y.-W. Zhang, J.-Y. Xu, and S.-P. Yan (2011). Study on potential antitumor mechanism of a novel Schiff Base copper(II) complex: synthesis, crystal structure, DNA binding, cytotoxicity and apoptosis induction activity. J. Inorg. Biochem. 105 (5), 728–737. https://doi.org/10.1016/j.jinorgbio.2011.01.004.

    Article  CAS  PubMed  Google Scholar 

  17. R. Fekri, M. Salehi, A. Asadi, and M. Kubicki (2018). Synthesis, characterization, anticancer and antibacterial evaluation of Schiff base ligands derived from hydrazone and their transition metal complexes. Inorg Chim Acta. https://doi.org/10.1016/j.ica.2018.09.022.

    Article  Google Scholar 

  18. Y. Mohini, R. B. N. Prasad, M. S. L. Karuna, Y. Poornachandra, and C. Ganesh Kumar (2014). Synthesis, antimicrobial and anti-biofilm activities of novel Schiff base analogues derived from methyl-12-aminooctadec-9-enoate. Bioorg. Med. Chem. Lett. 24 (22), 5224–5227. https://doi.org/10.1016/j.bmcl.2014.09.062.

    Article  CAS  PubMed  Google Scholar 

  19. Y. Jia and J. Li (2014). Molecular assembly of Schiff base interactions: construction and application. Chem. Rev. 115 (3), 1597–1621. https://doi.org/10.1021/cr400559g.

    Article  CAS  PubMed  Google Scholar 

  20. M. Rezaeivala and H. Keypour (2014). Schiff base and non-Schiff base macrocyclic ligands and complexes incorporating the pyridine moiety—the first 50 years. Coordination Chem. Rev. 280, 203–253. https://doi.org/10.1016/j.ccr.2014.06.007.

    Article  CAS  Google Scholar 

  21. C. Santini, M. Pellei, V. Gandin, M. Porchia, F. Tisato, and C. Marzano (2013). Advances in copper complexes as anticancer agents. Chem. Rev. 114 (1), 815–862. https://doi.org/10.1021/cr400135x.

    Article  CAS  PubMed  Google Scholar 

  22. D. Mahendiran, S. Amuthakala, N. S. P. Bhuvanesh, R. S. Kumar, and A. K. Rahiman (2018). Copper complexes as prospective anticancer agents: in vitro and in vivo evaluation, selective targeting of cancer cells by DNA damage and S phase arrest. RSC Adv. 8 (30), 16973–16990. https://doi.org/10.1039/c8ra00954f.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. P. R. Chetana, R. Rao, D. Lahiri, R. S. Policegoudra, R. Sankolli, and M. S. Aradhya (2014). μ-Oxamido binuclear copper (II) complexes: synthesis, crystal structure, DNA interaction and antibacterial studies. Polyhedron 68, 172–179. https://doi.org/10.1016/j.poly.2013.10.025.

    Article  CAS  Google Scholar 

  24. K. Zheng, L. Jiang, Y.-T. Li, Z.-Y. Wu, and C.-W. Yan (2015). Synthesis and structure of new dicopper(ii) complexes bridged by asymmetric N, N′-bis(substituted)oxamides: in vitro anticancer activity and molecular docking studies based on bio-macromolecular interaction. RSC Adv. 5 (64), 51730–51744. https://doi.org/10.1039/c5ra06357d.

    Article  CAS  Google Scholar 

  25. A. Berthod and S. Carda-Broch (2004). Determination of liquid–liquid partition coefficients by separation methods. J. Chromatogr. A 1037 (1–2), 3–14. https://doi.org/10.1016/j.chroma.2004.01.001.

    Article  CAS  PubMed  Google Scholar 

  26. L. R. Guerreiro, E. P. Carreiro, L. Fernandes, T. A. F. Cardote, R. Moreira, A. T. Caldeira, and A. J. Burke (2013). Five-membered iminocyclitol α-glucosidase inhibitors: synthetic, biological screening and in silico studies. Bioorg. Med. Chem. 21 (7), 1911–1917. https://doi.org/10.1016/j.bmc.2013.01.030.

    Article  CAS  PubMed  Google Scholar 

  27. E. H. Edinsha Gladis, K. Nagashri, and J. Joseph (2020). Design, synthesis, characterization, DNA binding, acetyl and butyryl cholinesterase activities of metal chelates with 1,10-Phenanthroline derivative. Inorg. Chem. Commun. 122, 108232. https://doi.org/10.1016/j.inoche.2020.108232.

    Article  CAS  Google Scholar 

  28. A. M. Abu-Dief and L. A. E. Nassr (2014). Tailoring, physicochemical characterization, antibacterial and DNA binding mode studies of Cu(II) Schiff bases amino acid bioactive agents incorporating 5-bromo-2-hydroxybenzaldehyde. J. Iran. Chem. Soc. 12 (6), 943–955. https://doi.org/10.1007/s13738-014-0557-9.

    Article  CAS  Google Scholar 

  29. L. H. Abdel-Rahman, A. M. Abu-Dief, H. Moustafa, and S. K. Hamdan (2016). Ni(II) and Cu(II) complexes with ONNO asymmetric tetradentate Schiff base ligand: synthesis, spectroscopic characterization, theoretical calculations, DNA interaction and antimicrobial studies. Appl. Organometal. Chem. 31 (2), e3555. https://doi.org/10.1002/aoc.3555.

    Article  CAS  Google Scholar 

  30. A. M. Abu-Dief, L. H. Abdel-Rahman, and A. A. H. Abdel-Mawgoud (2019). A robust in vitro anticancer, antioxidant and antimicrobial agents based on new metal-azomethine chelates incorporating Ag(I), Pd (II) and VO (II) cations: probing the aspects of DNA interaction. Appl. Organometal. Chem. 34, e5373. https://doi.org/10.1002/aoc.5373.

    Article  CAS  Google Scholar 

  31. X.-L. Zhao, Z.-S. Li, Z.-B. Zheng, A.-G. Zhang, and K.-Z. Wang (2013). pH luminescence switch, DNA binding and photocleavage, and cytotoxicity of a dinuclear ruthenium complex. Dalton Transactions 42 (16), 5764. https://doi.org/10.1039/c3dt33116d.

    Article  CAS  PubMed  Google Scholar 

  32. S. Kathiresan, S. Mugesh, M. Murugan, F. Ahamed, and J. Annaraj (2016). Mixed-ligand copper(ii)-phenolate complexes: structure and studies on DNA/protein binding profiles, DNA cleavage, molecular docking and cytotoxicity. RSC Adv. 6 (3), 1810–1825. https://doi.org/10.1039/c5ra20607c.

    Article  CAS  Google Scholar 

  33. M. Ganeshpandian, R. Loganathan, S. Ramakrishnan, A. Riyasdeen, M. A. Akbarsha, and M. Palaniandavar (2013). Interaction of mixed ligand copper(II) complexes with CT DNA and BSA: effect of primary ligand hydrophobicity on DNA and protein binding and cleavage and anticancer activities. Polyhedron 52, 924–938. https://doi.org/10.1016/j.poly.2012.07.021.

    Article  CAS  Google Scholar 

  34. F. Arjmand, S. Parveen, M. Afzal, and M. Shahid (2012). Synthesis, characterization, biological studies (DNA binding, cleavage, antibacterial and topoisomerase I) and molecular docking of copper(II) benzimidazole complexes. J. Photochem. Photobiol. B: Biol. 114, 15–26. https://doi.org/10.1016/j.jphotobiol.2012.05.003.

    Article  CAS  Google Scholar 

  35. P. Sathyadevi, P. Krishnamoorthy, R. R. Butorac, A. H. Cowley, N. S. P. Bhuvanesh, and N. Dharmaraj (2011). Effect of substitution and planarity of the ligand on DNA/BSA interaction, free radical scavenging and cytotoxicity of diamagnetic Ni(ii) complexes: a systematic investigation. Dalton Trans. 40 (38), 9690. https://doi.org/10.1039/c1dt10767d.

    Article  CAS  PubMed  Google Scholar 

  36. Z. A. Siddiqi, P. K. Sharma, M. Shahid, S. Kumar, Anjuli, and A. Siddique (2012). Structural, electrochemical characterization and SOD mimic activities of 1D chain or 3D network encouraged by unique μ2-bridging by adipate ion in mixed ligand complexes containing α-diimine as auxiliary ligand. Spectrochim. Acta A: Mol. Biomol. Spectrosc. 93, 280–289. https://doi.org/10.1016/j.saa.2012.03.009.

    Article  CAS  PubMed  Google Scholar 

  37. J. Joseph, K. Nagashri, and G. B. Janaki (2012). Novel metal based anti-tuberculosis agent: synthesis, characterization, catalytic and pharmacological activities of copper complexes. Eur. J. Med. Chem. 49, 151–163. https://doi.org/10.1016/j.ejmech.2012.01.006.

    Article  CAS  PubMed  Google Scholar 

  38. A. Kładna, P. Berczyński, I. Kruk, T. Piechowska, and H. Y. Aboul-Enein (2016). Studies on the antioxidant properties of some phytoestrogens. Luminescence 31 (6), 1201–1206. https://doi.org/10.1002/bio.3091.

    Article  CAS  PubMed  Google Scholar 

  39. K. Nagashri, J. Joseph, and C. J. Dhanaraj (2011). Copper(II) complexes of hydroxyflavone derivatives as potential bioactive molecule to combat antioxidants: synthesis, characterization and pharmacological activities. Appl Organometal Chem. https://doi.org/10.1002/aoc.1831.

    Article  Google Scholar 

  40. F. Li, M. Feterl, J. M. Warner, A. I. Day, F. R. Keene, and J. G. Collins (2013). Protein binding by dinuclear polypyridyl ruthenium(ii) complexes and the effect of cucurbit[10]uril encapsulation. Dalton Trans. 42 (24), 8868. https://doi.org/10.1039/c3dt50551k.

    Article  CAS  PubMed  Google Scholar 

  41. B. Demoro, R. F. M. de Almeida, F. Marques, C. P. Matos, L. Otero, J. Costa Pessoa, and A. I. Tomaz (2013). Screening organometallic binuclear thiosemicarbazone ruthenium complexes as potential anti-tumour agents: cytotoxic activity and human serum albumin binding mechanism. Dalton Trans. 42 (19), 7131. https://doi.org/10.1039/c3dt00028a.

    Article  CAS  PubMed  Google Scholar 

  42. E. M. Mrkalić, R. M. Jelić, O. R. Klisurić, and Z. D. Matović (2014). Synthesis of novel palladium(ii) complexes with oxalic acid diamide derivatives and their interaction with nucleosides and proteins: structural, solution, and computational study. Dalton Trans. 43 (40), 15126–15137. https://doi.org/10.1039/c3dt53384k.

    Article  PubMed  Google Scholar 

  43. X.-B. Fu, D.-D. Liu, Y. Lin, W. Hu, Z.-W. Mao, and X.-Y. Le (2014). Water-soluble DNA minor groove binders as potential chemotherapeutic agents: synthesis, characterization, DNA binding and cleavage, antioxidation, cytotoxicity and HSA interactions. Dalton Trans. 43 (23), 8721. https://doi.org/10.1039/c3dt53577k.

    Article  CAS  PubMed  Google Scholar 

  44. M. Ganeshpandian, R. Loganathan, E. Suresh, A. Riyasdeen, M. A. Akbarsha, and M. Palaniandavar (2014). New ruthenium(ii) arene complexes of anthracenyl-appended diazacycloalkanes: effect of ligand intercalation and hydrophobicity on DNA and protein binding and cleavage and cytotoxicity. Dalton Trans. 43 (3), 1203–1219. https://doi.org/10.1039/c3dt51641e.

    Article  CAS  PubMed  Google Scholar 

  45. Y.-J. Hu, H.-L. Yue, X.-L. Li, S.-S. Zhang, E. Tang, and L.-P. Zhang (2012). Molecular spectroscopic studies on the interaction of morin with bovine serum albumin. J. Photochem. Photobiol. B: Biol. 112, 16–22. https://doi.org/10.1016/j.jphotobiol.2012.04.001.

    Article  CAS  Google Scholar 

  46. M. Kyropoulou, C. P. Raptopoulou, V. Psycharis, and G. Psomas (2013). Ni(II) complexes with non-steroidal anti-inflammatory drug diclofenac: structure and interaction with DNA and albumins. Polyhedron 61, 126–136. https://doi.org/10.1016/j.poly.2013.05.043.

    Article  CAS  Google Scholar 

  47. O. K. Abou-Zied (2012). Revealing the ionization ability of binding site I of human serum albumin using 2-(2′-hydroxyphenyl)benzoxazole as a pH sensitive probe. Phys. Chem. Chem. Phys. 14 (8), 2832. https://doi.org/10.1039/c2cp23337a.

    Article  CAS  PubMed  Google Scholar 

  48. S. Chandra, S. Bargujar, R. Nirwal, and N. Yadav (2013). Synthesis, spectral characterization and biological evaluation of copper(II) and nickel(II) complexes with thiosemicarbazones derived from a bidentate Schiff base. Spectrochim. Acta A: Mol. Biomol. Spectrosc. 106, 91–98. https://doi.org/10.1016/j.saa.2012.12.014.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

I thank Department of Pharmaceutical Chemistry Manonmaniam Sundaranar University & Department of Chemistry, Manonmaniam Sundaranar University, for the support to carry out this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ebenezer Bonpandi.

Ethics declarations

Conflict of Interest

No potential conflict of interest was reported by the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 483 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bonpandi, E., Kandasamy, N. Design, Synthesis, Characterization, Anti-Microbial, Anti-Oxidant, DNA, HSA, Cytotoxicity and Anti-Inflammatory Studies of Nitrogen-Substituted Chrysin Derivatives and Metal(II) Complexes. J Clust Sci 34, 2113–2134 (2023). https://doi.org/10.1007/s10876-022-02372-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-022-02372-w

Keywords

Navigation