Skip to main content
Log in

Phyto-Green (Grape, Orange Pomace) and Chemical Fabricated Silver Nanoparticles: Influence Type of Stabilizers Component on Antioxidant and Antimicrobial Activity

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

In this study, silver nanoparticles were synthesized by a novel, environmentally friendly method using low-pressure cold plasma in different ways: for chemical and green synthesis. The “traditional” Ag NP capping agents (sodium citrate, sodium alginate, poly(vinyl alcohol), polyvinylpyrrolidone, Tween-80, sodium carboxymethyl cellulose, and “green” stabilizers (grape and orange pomace) were used in the researched synthesis methods. The synthesized Ag NPs were characterized through different techniques such as UV–Vis, DLS-method, SEM HR-TEM for morphology parameter investigation. It was established that the manifestation of antiradical activity (DPPH method) (30–80% in concentrations of 0.1–1.5 mg/mL) is ensured only when using “green” types of stabilizers, and in this case, the method of synthesis and characteristics of NPs are not of decisive importance. Experimental data and theoretical quantum-chemical calculations have shown that the intensity of the antiradical effect of “green” stabilizers (grape and orange pomace) is largely determined by the content of phenolic and polyphenolic compounds (LC–MS method). The type of stabilizer, which determines the size of the NPs and the zeta potential, has a decisive influence on the intensity of the manifestation of antimicrobial properties. The latter determines the rate of release of silver ions and the intensity of antimicrobial action.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability

Availability of data and material.

References

  1. J. Wang, S. Chen, and L. Zhang (2021). J. Electron. Mater. 50, 5498.

    Google Scholar 

  2. S. A. Mazari, E. Ali, R. Abro, F. S. A. Khan, I. Ahmed, M. Ahmed, and A. Shah (2021). J. Environ. Chem. Eng. 9, 105028.

    Article  CAS  Google Scholar 

  3. D. C. Lekha, R. Shanmugam, K. Madhuri, L. P. Dwarampudi, M. Bhaskaran, D. Kongara, J. L. Tesfaye, N. Nagaprasad, V. L. Nirmal Bhargavi, and R. Krishnaraj (2021). J. Nanomater. 2021, 4401829.

    Article  Google Scholar 

  4. A. C. Csakvari, C. Moisa, D. G. Radu, L. M. Olariu, A. I. Lupitu, A. O. Panda, G. Pop, D. Chambre, V. Socoliuc, L. Copolovici, and D. M. Copolovici (2021). Molecules 26, 4041.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. K. Khurana and N. Jaggi (2021). Plasmonics 16, 981.

    Article  CAS  Google Scholar 

  6. A. Nene, M. Galluzzi, L. Hongrong, P. Somani, S. Ramakrishna, and Y. Xue-Feng (2021). Nanoscale 13, 13923.

    Article  CAS  PubMed  Google Scholar 

  7. M. Guilger-Casagrande, T. Germano-Costa, N. Bilesky-José, et al. (2021). J. Nanobiotechnol. 19, 53.

    Article  CAS  Google Scholar 

  8. S. Dawadi, S. Katuwal, A. Gupta, U. Lamichhane, R. Thapa, S. Jaisi, G. Lamichhane, D. P. Bhattarai, and N. Parajuli (2021). J. Nanomater. 2016, 687290.

    Google Scholar 

  9. A. Shabir, et al. (2019). Int. J. Nanomed. 14, 5087.

    Article  Google Scholar 

  10. N. U. H. Altaf, M. Y. Naz, S. Shukrullah, H. N. Bhatti, M. Irfan, M. A. Alsaiari, S. Rahman, U. M. Niazi, A. Glowacz, and K. Proniewska (2021). Materials 14, 5841.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. U. Shuaib, T. Hussain, R. Ahmad, M. Zakaullah, F. E. Mubarik, S. T. Muntaha, and S. Ashraf (2020). Mater. Res. Express 7, 035015.

    Article  CAS  Google Scholar 

  12. N. Boonyeun, R. Rujiravanit, and N. Saito (2021). Polymers 13, 991.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. M. Skiba, A. Pivovarov, V. Vorobyova, T. Derkach, and I. Kurmakova (2019). J. Chem. Technol. Metall. 54, 311.

    CAS  Google Scholar 

  14. F. Rashid, Y. Bao, Z. Ahmed, and J.-Y. Huang (2020). Food Res. Int. 138, 109776.

    Article  CAS  PubMed  Google Scholar 

  15. M. Skiba and V. Vorobyova (2018). Mol. Cryst. Liquid Cryst. 674, 142.

    Article  CAS  Google Scholar 

  16. G. Vasyliev, V. Vorobyova, M. Skiba, and L. Khrokalo (2020). Adv. Mater. Sci. Eng 2020, 4505787.

    Google Scholar 

  17. V. Vorobyova, G. Vasyliev, and M. Skiba (2020). Appl. Nanosci. 10, 4523.

    Article  CAS  Google Scholar 

  18. O. A. Pivovarov, M. I. Skiba, A. K. Makarova, V. I. Vorobyova, and O. O. Pasenko (2017). Vopr Khimii Khimicheskoi Tekhnol. 6, 82.

    Google Scholar 

  19. M. Skiba, V. Vorobyova, A. Pivovarov, and N. Makarshenko (2020). J. Nanomater. 2020, 3051308.

    Article  Google Scholar 

  20. M. I. Skiba, V. I. Vorobyova, and I. V. Kosogina (2020). J. Chem. 2020, 5380950.

    Article  Google Scholar 

  21. L. Zhao, M. Wenya, A. Iftikhar, Z. Huanzhu, W. Daijie, and Q. Jiying (2020). ACS Omega. 5, 32632.

    Article  PubMed  PubMed Central  Google Scholar 

  22. G. Das, H. S. Shin, and J. K. Patra (2020). Int. J. Nanomed. 15, 9075.

    Article  CAS  Google Scholar 

  23. R. Arif and S. Jadoun (2020). Med. Devices Sens. 4, 10158.

    Google Scholar 

  24. M. Z. Shah, Z. H. Guan, A. U. Din, et al. (2021). Sci Rep. 11, 20754.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. A. Salayová, Z. Bedlovičová, N. Daneu, M. Baláž, Z. Lukáčová Bujňáková, Ľ Balážová, and Ľ Tkáčiková (2021). Nanomaterials 11, 1005.

    Article  PubMed  PubMed Central  Google Scholar 

  26. W. A. Shaikh, S. Chakraborty, G. Owens, et al. (2021). Appl. Nanosci. 11, 2625.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. M. A. Ebrahimzadeh, A. Naghizadeh, O. Amiri, et al. (2020). Bioorg. Chem. 94, 103425.

    Article  CAS  PubMed  Google Scholar 

  28. A. A. H. Abdellatif, H. Alturki, and H. M. Tawfeek (2021). Sci. Rep. 11, 84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. A. A. Bhutto, Ş Kalay, S. T. H. Sherazi, and M. Culha (2018). Talanta 189, 174.

    Article  CAS  PubMed  Google Scholar 

  30. M. Skiba, V. Vorobyova, O. Pivovarov, K. Sorochkina, and A. Shakun (2020). Appl. Nanosci. 1, 53.

    Google Scholar 

  31. M. I. Skiba and V. I. Vorobyova (2019). Adv. Mater. Sci. Eng. 2019, 8306015.

    Article  Google Scholar 

  32. M. Skiba, A. Pivovarov, A. Makarova, and V. Vorobyova (2018). Chem. J. Mold. 13, 7.

    Article  CAS  Google Scholar 

  33. Z. Bedlovičová, I. Strapáč, M. Baláž, and A. Salayová (2020). Molecules 25, 3191.

    Article  PubMed  PubMed Central  Google Scholar 

  34. M. Skiba, V. Vorobyova, A. Pivovarov, A. Shakun, E. Gnatko, and I. Trus (2018). Eastern-Eur. Enterp. Technol. 5, 51.

    Article  Google Scholar 

  35. G. S. Vasyliev, V. I. Vorobyova, and O. V. Linyucheva (2020). J. Anal. Methods Chem. 2020, 8869436.

    Article  PubMed  PubMed Central  Google Scholar 

  36. E. Chygyrynets and V. Vorobyova (2014). Chem. Chem. Technol. 8, 235.

    Article  CAS  Google Scholar 

  37. V. Vorobyova, O. Chygyrynetś, M. Skiba, I. Kurmakova, and O. Bondar (2017). Int. J. Corros. Scale Inhib. 6, 485.

    CAS  Google Scholar 

  38. D. Van Phu, L. A. Quoc, N. N. Duy, et al. (2014). Nanoscale Res. Lett. 9, 162.

    Article  PubMed  PubMed Central  Google Scholar 

  39. I. Begum, S. Shamim, F. Ameen, Z. Hussain, S. A. Bhat, T. Qadri, and M. A. Hussain (2022). Processes 10, 716.

    Article  CAS  Google Scholar 

  40. M. Pollini, M. Russo, A. Licciulli, A. Sannino, and A. Maffezzoli (2009). J. Mater. Sci. Mater. Med. 20, 2361–2366.

    Article  CAS  PubMed  Google Scholar 

  41. V. Vorobyova, M. Skiba, Y. Miliar, and S. Frolenkova (2021). J. Chem. Technol. Metall. 56, 919.

    CAS  Google Scholar 

  42. K. M. Soto, C. T. Quezada-Cervantes, M. Hernández-Iturriaga, G. Luna-Bárcenas, R. Vazquez-Duhalt, and S. Mendoza (2019). LWT 103, 293.

    Article  CAS  Google Scholar 

  43. M. Danaei, M. Dehghankhold, S. Ataei, F. Hasanzadeh Davarani, R. Javanmard, A. Dokhani, S. Khorasani, and M. R. Mozafari (2018). Pharmaceutics 10, 57.

    Article  PubMed  PubMed Central  Google Scholar 

  44. G. D. Saratale, R. G. Saratale, D. S. Kim, D. Y. Kim, and H. S. Shin (2020). Nanomaterials 10, 1457.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the Ministry of Education and Science of Ukraine [Grant nos. 21/190590, 2022–2024].

Author information

Authors and Affiliations

Authors

Contributions

MS: conceptualization, methodology, investigation, writing-original draft, VV: antioxidant activity, KS: formal analysis.

Corresponding author

Correspondence to M. Skiba.

Ethics declarations

Conflict of interest

The authors have no conflict of interest.

Ethical Approval

Ethics approval (include appropriate approvals or waivers), the authors agree with ethical standards.

Consent to Participate

The authors agree with to participate as author of the article.

Consent for Publication

The authors agree publication of the article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 906 kb)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Skiba, M., Vorobyova, V. & Sorochkina, K. Phyto-Green (Grape, Orange Pomace) and Chemical Fabricated Silver Nanoparticles: Influence Type of Stabilizers Component on Antioxidant and Antimicrobial Activity. J Clust Sci 34, 1907–1925 (2023). https://doi.org/10.1007/s10876-022-02350-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-022-02350-2

Keywords

Navigation