Skip to main content
Log in

In Situ Preparation of Gold Nanoparticles Using Poly(ethylenimine)/(Phenylthio) Acetic Acid Ion Pair Self-assembly as a Reducing and a Capping Material and Its NIR–Responsive Release Property

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

Gold nanoparticle (GNP) was prepared in situ using poly(ethylenimine)/(phenylthio) acetic acid(PEI/PTA) ion pair self-assembly(IPSAM) as a reducing and a capping material. The upper critical solution temperature of the ion pair was affected by the addition of gold ions. Gold ion could be converted to GNP in the IPSAM suspension by aging for 60–150 min. The aging period was shorter and the surface plasmon resonance signal of GNP was stronger as the ion concentration (0.5 and 2.5 mM) and the temperature (20, 30, and 40 °C) were higher. X-ray photoelectron spectroscopy revealed that gold existed with the PEI/PTA IPSAM as a metallic state after 24 h aging. A transmission electron microscopy revealed that GNP existed on the inside of the IPSAM and the lattice spacing of GNP was about 0.20 nm. The release degree of nile red loaded in the IPSAM under near-infrared (NIR) irradiation was proportional to the GNP content. The maximum release degree for 60 min was about 5.7, 6.5, 17.6, 32.4, and 41.2%, respectively, when the GNP content was 0, 0.25, 0.35, 0.6, and 1.55%. The IPSAM containing GNP would be used as a drug carrier that releases its cargo in answering to NIR irradiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. M. Ogasawara, X. Lin, H. Kurata, H. Ouchi, M. Yamauchi, T. Ohba, T. Kajitani, T. Fukushima, M. Numata, R. Nogami, and B. Adhikari (2018). Mater. Chem. Front. 2, 171.

    Article  CAS  Google Scholar 

  2. A. Ryzhakov, T. Do Thi, J. Stappaerts, L. Bertoletti, K. Kimpe, A. R. Couto, P. Saokham, G. Van den Mooter, P. Augustijns, G. W. Somsen, and S. Kurkov (2016). J. Pharm. Sci. 105, 2556.

    Article  CAS  PubMed  Google Scholar 

  3. C. Yuan, W. Ji, R. Xing, J. Li, E. Gazit, and X. Yan (2019). Na. Rev. Chem. 3, 567.

    Article  CAS  Google Scholar 

  4. X. Yu, W.-B. Zhang, K. Yue, X. Li, H. Liu, Y. Xin, C. L. Wang, C. Wesdemiotis, and S. Z. Cheng (2012). J. Am. Chem. Soc. 134, 778.

    Google Scholar 

  5. Y. Liu, Y. Li, J. He, K. J. Duelge, Z. Lu, and Z. Nie (2014). J. Am. Chem. Soc. 136, 2602.

    Article  CAS  PubMed  Google Scholar 

  6. M. Ramanathan, L. K. Shrestha, T. Mori, Q. Ji, J. P. Hill, and K. Ariga (2013). Phys. Chem. Chem. Phys. 15, 10580.

    Article  CAS  PubMed  Google Scholar 

  7. D. Lombardo, M. A. Kiselev, S. Magazù, and P. Calandra (2015). Adv. Condens. Matter. Phys. 2015, 1.

    Article  Google Scholar 

  8. P. J. Stang and B. Olenyuk (1997). Acc. Chem. Res. 30, 502.

    Article  CAS  Google Scholar 

  9. R. Nagarajan (2002). Langmuir 18, 31.

    Article  CAS  Google Scholar 

  10. V. V. Kumar (1991). Proc. Natl. Acad. Sci. 88, 444.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. N. W. Ashcroft and D. C. Langreth (1967). I. Phys. Rev. 156, 685.

    Article  CAS  Google Scholar 

  12. J. G. Riess (2009). Curr. Opin. Colloid Interface Sci. 14, 294.

    Article  CAS  Google Scholar 

  13. M. Roux, B. Perly, and F. Djedaïni-Pilard (2007). Eur. Biophys. J. 36, 861.

    Article  CAS  PubMed  Google Scholar 

  14. P. Alexandridis and B. Lindman, Amphiphilic Block Copolymers, 1st ed. (Elsevier, Amsterdam, 2000), pp. 319–408.

    Google Scholar 

  15. T. Shimizu, M. Masuda, and H. Minamikawa (2005). Chem. Rev. 105, 1401.

    Article  CAS  PubMed  Google Scholar 

  16. C. Wang, Z. Wang, and X. Zhang (2012). Acc. Chem. Res. 45, 608–618.

    Article  CAS  PubMed  Google Scholar 

  17. S. H. Park, P. Yin, Y. Liu, J. H. Reif, T. H. LaBean, and H. Yan (2005). Nano. Lett. 5, 729.

    Article  CAS  PubMed  Google Scholar 

  18. S. Saha, I. Regeni, and G. H. Clever (2018). Coord. Chem. Rev. 374, 1.

    Article  CAS  Google Scholar 

  19. N. B. Debata, D. Tripathy, and D. K. Chand (2012). Coord. Chem. Rev. 256, 1831.

    Article  CAS  Google Scholar 

  20. G. Pasparakis and M. Vamvakaki (2011). Polym. Chem. 2, 1234.

    Article  CAS  Google Scholar 

  21. Z. Cao, H. Wu, J. Dong, and G. Wang (2014). Macromolecules 47, 8777.

    Article  CAS  Google Scholar 

  22. S. Sugihara, S. Kanaoka, and S. Aoshima (2004). J. Polym. Sci. Part. A: Polym. Chem. 42, 2601.

    Article  CAS  Google Scholar 

  23. L.-J. Chen and H.-B. Yang (2018). Acc. Chem. Res. 51, 2699.

    Article  CAS  PubMed  Google Scholar 

  24. M. Alle, G. Sharma, S. H. Lee, and J.-C. Kim (2022). J. Nanobiotechnol. 20, 222.

    Article  Google Scholar 

  25. T. H. Kim, M. Alle, S. C. Park, F. Zhao, W. Long, S. Samala, and J.-C. Kim (2021). Chem. Eng. J. 415, 128954.

    Article  CAS  Google Scholar 

  26. M. Alle, R. Bandi, G. Sharma, R. Dadigala, S. H. Lee, and J.-C. Kim (2021). Int. J. Biol. Macromol. 201, 686.

    Article  Google Scholar 

  27. S. H. Chien and W. R. Clayton (1980). Soil. Sci. Soc. Am. J. 44, 265.

    Article  CAS  Google Scholar 

  28. P. L. Ritger and N. A. Peppas (1987). J. Control. Release 5, 37.

    Article  CAS  Google Scholar 

  29. T. Higuchi (1961). J. Pharm. Sci. 50, 874.

    Article  CAS  PubMed  Google Scholar 

  30. M. Alle, R. Bandi, G. Sharma, S. H. Lee, and J.-C. Kim (2021). Carbohydr. Polym. 258, 117693.

    CAS  Google Scholar 

  31. M. Alle, S. C. Park, R. Bandi, S. H. Lee, and J.-C. Kim (2021). Carbohydr. Polym. 253.

    Article  CAS  PubMed  Google Scholar 

  32. A. Madhusudhan, G. B. Reddy, M. Venkatesham, G. Veerabhadram, D. A. Kumar, S. Natarajan, M. Y. Yang, A. Hu, and S. S. Singh (2014). Int. J. Mol. Sci. 15, 8216.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (No. 2018R1A6A1A03025582). This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. 2022R1A2C2003353).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin-Chul Kim.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest. The authors alone are responsible for the content and writing of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 2463 kb)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Long, W., Park, Y. & Kim, JC. In Situ Preparation of Gold Nanoparticles Using Poly(ethylenimine)/(Phenylthio) Acetic Acid Ion Pair Self-assembly as a Reducing and a Capping Material and Its NIR–Responsive Release Property. J Clust Sci 34, 1641–1650 (2023). https://doi.org/10.1007/s10876-022-02340-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-022-02340-4

Keywords

Navigation