Skip to main content

Advertisement

Log in

Facile Synthesis of ZnO:Sb/g-C3N4 Composite Materials for Photocatalysis Applications

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

Pure ZnO, Sb-doped ZnO, and ZnO:Sb/g-C3N4 nanocomposite were prepared using a simple wet chemical route. The XRD results showed the hexagonal wurtzite structure of synthesized nanoparticles. The inclusion of Sb and Graphitic carbon nitride (g-C3N4) changes the lattice parameters without affecting crystal structure. From TEM images, the morphology of the ZnO:Sb/g-C3N4 nanoparticle was found to be agglomerated spherical nanoparticles which are embedded over the nanosheets of graphitic carbon. The P.L. studies of ZnO:Sb/g-C3N4 nanocomposite exhibit reduced luminous intensity due to increased charge transfer among the ZnO:Sb and g-C3N4which improved the photocatalytic activity. A decrease in the optical energy band gap of ZnO:Sb/g-C3N4 nanoparticles from 3.3 to 3.26 eV was analyzed by Diffuse reflectance spectroscopy. The photodegradation of Methylene Blue dye was studied in the presence of photocatalysts. The degradation efficiency and rate constant values for ZnO:Sb/g-C3N4 are 86% and 0.037 min−1for 60 min.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

The data supporting this study's findings are available from the corresponding author upon reasonable request.

References

  1. K. Karthik, S. Dhanuskodi, C. Gobinath, S. Prabukumar, and S. Sivaramakrishnan (2018). Multifunctional properties of microwave assisted CdO–NiO–ZnO mixed metal oxide nanocomposite: enhanced photocatalytic and antibacterial activities. J. Mater. Sci. Mater. Electron. 29 (7), 5459–5471. https://doi.org/10.1007/s10854-017-8513-y.

    Article  CAS  Google Scholar 

  2. G. Poongodi, R. M. Kumar, and R. Jayavel (2015). Structural, optical and visible light photocatalytic properties of nanocrystalline Nd doped ZnO thin films prepared by spin coating method. Ceram. Int. 41 (3), 4169–4175. https://doi.org/10.1016/j.ceramint.2014.12.098.

    Article  CAS  Google Scholar 

  3. S. Muthulingam, I. H. Lee, and P. Uthirakumar (2015). Highly efficient degradation of dyes by carbon quantum dots/N-doped zinc oxide (CQD/N-ZnO) photocatalyst and its compatibility on three different commercial dyes under daylight. J. Colloid Interface Sci. 455, 101–109. https://doi.org/10.1016/J.JCIS.2015.05.046.

    Article  CAS  PubMed  Google Scholar 

  4. S. M. Lam, J. C. Sin, and A. R. Mohamed (2016). A review on photocatalytic application of g-C3N4/semiconductor (CNS) nanocomposites towards the erasure of dyeing wastewater. Mater. Sci. Semicond. Process. 47, 62–84. https://doi.org/10.1016/j.mssp.2016.02.019.

    Article  CAS  Google Scholar 

  5. X. Chen, et al. (2017). A bio-inspired strategy to enhance the photocatalytic performance of g-C3N4 under solar irradiation by axial coordination with hemin. Appl. Catal. B Environ. 201, 518–526. https://doi.org/10.1016/j.apcatb.2016.08.020.

    Article  CAS  Google Scholar 

  6. R. C. Pawar, D. Cho, and C. S. Lee (2013). Fabrication of nanocomposite photocatalysts from zinc oxide nanostructures and reduced graphene oxide. Curr. Appl. Phys. 13 (4), 1–8. https://doi.org/10.1016/j.cap.2012.12.031.

    Article  Google Scholar 

  7. K. Ravichandran and E. Sindhuja (2019). Fabrication of cost effective g-C3N4+Ag activated ZnO photocatalyst in thin film form for enhanced visible light responsive dye degradation. Mater. Chem. Phys. 221, 203–215. https://doi.org/10.1016/j.matchemphys.2018.09.038.

    Article  CAS  Google Scholar 

  8. D. Chen, et al. (2015). Graphene-wrapped ZnO nanospheres as a photocatalyst for high performance photocatalysis. Thin Solid Films 574, 1–9. https://doi.org/10.1016/j.tsf.2014.11.051.

    Article  CAS  Google Scholar 

  9. S. Juabrum, T. Chankhanittha, and S. Nanan (2019). Hydrothermally grown SDS-capped ZnO photocatalyst for degradation of RR141 azo dye. Mater. Lett. 245, 1–5. https://doi.org/10.1016/j.matlet.2019.02.080.

    Article  CAS  Google Scholar 

  10. R. Kumar, J. Rashid, and M. A. Barakat (2015). Zero valent Ag deposited TiO2 for the efficient photocatalysis of methylene blue under UV-C light irradiation. Colloids Interface Sci. Commun. 5, 1–4. https://doi.org/10.1016/j.colcom.2015.05.001.

    Article  CAS  Google Scholar 

  11. S. Thangavel, K. Krishnamoorthy, V. Krishnaswamy, N. Raju, S. J. Kim, and G. Venugopal (2015). Graphdiyne-ZnO nanohybrids as an advanced photocatalytic material. J. Phys. Chem. C 119 (38), 22057–22065. https://doi.org/10.1021/acs.jpcc.5b06138.

    Article  CAS  Google Scholar 

  12. B. Saravanakumar, R. Mohan, K. Thiyagarajan, and S. J. Kim (2013). Investigation of UV photoresponse property of Al, N co-doped ZnO film. J. Alloys Compd. 580, 538–543. https://doi.org/10.1016/j.jallcom.2013.05.014.

    Article  CAS  Google Scholar 

  13. R. Shabannia (2018). High-sensitivity UV photodetector based on oblique and vertical Co-doped ZnO nanorods. Mater. Lett. 214, 254–256. https://doi.org/10.1016/j.matlet.2017.12.019.

    Article  CAS  Google Scholar 

  14. S. Bhatia, N. Verma, and R. K. Bedi (2017). Sn-doped ZnO nanopetal networks for efficient photocatalytic degradation of dye and gas sensing applications. Appl. Surf. Sci. 407, 495–502. https://doi.org/10.1016/j.apsusc.2017.02.205.

    Article  CAS  Google Scholar 

  15. K. D. A. Kumar, et al. (2022). Enhancement of performance of Ga incorporated ZnO UV photodetectors prepared by simplified two step chemical solution process. Sensors Actuators A Phys. 333, 113217. https://doi.org/10.1016/J.SNA.2021.113217.

    Article  CAS  Google Scholar 

  16. Y. Cheng, et al. (2019). Binding energy of Sb-related complex in p-doped ZnO film. J. Alloys Compd. 800, 219–223. https://doi.org/10.1016/j.jallcom.2019.06.033.

    Article  CAS  Google Scholar 

  17. M. Laurenti, N. Garino, N. Garino, G. Canavese, S. Hernandéz, and V. Cauda (2020). Piezo- and photocatalytic activity of ferroelectric ZnO:Sb thin films for the efficient degradation of rhodamine-β dye pollutant. ACS Appl. Mater. Interfaces 12 (23), 25798–25808. https://doi.org/10.1021/acsami.0c03787.

    Article  CAS  PubMed  Google Scholar 

  18. A. Akhundi, A. Habibi-Yangjeh, M. Abitorabi, and S. R. Pouran (2019). Review on photocatalytic conversion of carbon dioxide to value-added compounds and renewable fuels by graphitic carbon nitride-based photocatalysts. Catal Rev 61, 595–628. https://doi.org/10.1080/01614940.2019.1654224.

    Article  CAS  Google Scholar 

  19. N. Chidhambaram, S. Valanarasu, V. Ganesh, and S. Gobalakrishnan (2020). Unraveling the enhanced photocatalytic decomposition efficacy of the Al-doped ZnO nanoparticles@graphene sheets. J. Phys. D. Appl. Phys. 53 (46), 465111. https://doi.org/10.1088/1361-6463/abaa6f.

    Article  CAS  Google Scholar 

  20. J. Cao, et al. (2017). Cocoon-like ZnO decorated graphitic carbon nitride nanocomposite: Hydrothermal synthesis and ethanol gas sensing application. Mater. Lett. 198, 76–80. https://doi.org/10.1016/j.matlet.2017.03.143.

    Article  CAS  Google Scholar 

  21. F. Meng, et al. (2019). ZnO-reduced graphene oxide composites sensitized with graphitic carbon nitride nanosheets for ethanol sensing. ACS Appl. Nano Mater. 2 (5), 2734–2742. https://doi.org/10.1021/acsanm.9b00257.

    Article  CAS  Google Scholar 

  22. S. Sivasakthi and K. Gurunathan (2020). Graphitic carbon nitride bedecked with CuO/ZnO hetero-interface microflower towards high photocatalytic performance. Renew. Energy 159, 786–800. https://doi.org/10.1016/j.renene.2020.06.027.

    Article  CAS  Google Scholar 

  23. E. Sindhuja, K. Ravichandran, and K. Shantha Seelan (2018). Cost-effective fabrication of (g-C3N4 + Mo) added photostable ZnO thin films for enhanced visible light responsive photocatalytic dye degradation. Mater. Res. Bull. 103, 299–308. https://doi.org/10.1016/j.materresbull.2018.03.007.

    Article  CAS  Google Scholar 

  24. N. Chidhambaram and K. Ravichandran (2017). Fabrication of ZnO/g-C3N4 nanocomposites for enhanced visible light driven photocatalytic activity. Mater Res Express. https://doi.org/10.1088/2053-1591/aa7abd.

    Article  Google Scholar 

  25. X. Liu, et al. (2021). Recent developments of doped g-C3N4 photocatalysts for the degradation of organic pollutants. Crit. Rev. Environ. Sci. Technol. 51 (8), 751–790. https://doi.org/10.1080/10643389.2020.1734433.

    Article  CAS  Google Scholar 

  26. S. Kumar, N. L. Reddy, A. Kumar, M. V. Shankar, and V. Krishnan (2018). Two dimensional N-doped ZnO-graphitic carbon nitride nanosheets heterojunctions with enhanced photocatalytic hydrogen evolution. Int. J. Hydrogen Energy 43 (8), 3988–4002. https://doi.org/10.1016/j.ijhydene.2017.09.113.

    Article  CAS  Google Scholar 

  27. H. Moussa, et al. (2018). Growth of ZnO nanorods on graphitic carbon nitride gCN sheets for the preparation of photocatalysts with high visible-light activity. ChemCatChem 10 (21), 4987–4997. https://doi.org/10.1002/cctc.201801206.

    Article  CAS  Google Scholar 

  28. J. Mu, et al. (2011). High photocatalytic activity of ZnO-carbon nanofiber heteroarchitectures. ACS Appl. Mater. Interfaces 3 (2), 590–596. https://doi.org/10.1021/am101171a.

    Article  CAS  PubMed  Google Scholar 

  29. G. R. Dillip, A. N. Banerjee, V. C. Anitha, B. Deva-Prasad-Raju, S. W. Joo, and B. K. Min (2016). Oxygen vacancy-induced structural, optical, and enhanced supercapacitive performance of zinc oxide anchored graphitic carbon nanofiber hybrid electrodes. ACS Appl. Mater. Interfaces 8 (7), 5025–5039. https://doi.org/10.1021/acsami.5b12322.

    Article  CAS  PubMed  Google Scholar 

  30. A. Sakthivelu, et al. (2019). A noticeable effect of novel Nd3+ doping on physical properties of nebulizer spray deposited AZO thin films for optoelectronic technology. Opt. Quantum Electron. 51 (10), 1–18. https://doi.org/10.1007/s11082-019-2027-1.

    Article  CAS  Google Scholar 

  31. Y. Liu, Y. Hu, M. Zhou, H. Qian, and X. Hu (2012). Microwave-assisted non-aqueous route to deposit well-dispersed ZnO nanocrystals on reduced graphene oxide sheets with improved photoactivity for the decolorization of dyes under visible light. Appl. Catal. B Environ. 125, 425–431. https://doi.org/10.1016/j.apcatb.2012.06.016.

    Article  CAS  Google Scholar 

  32. S. Jagadhesan, N. Senthilkumar, V. Senthilnathan, and T. S. Senthil (2018). Sb doped ZnO nanostructures prepared via co-precipitation approach for the enhancement of MB dye degradation. Mater. Res. Express 5 (2), 68. https://doi.org/10.1088/2053-1591/aaaf80.

    Article  CAS  Google Scholar 

  33. Y. Liu, H. Liu, H. Zhou, T. Li, and L. Zhang (2019). A Z-scheme mechanism of N-ZnO/g-C 3 N 4 for enhanced H 2 evolution and photocatalytic degradation. Appl. Surf. Sci. 466, 133–140. https://doi.org/10.1016/j.apsusc.2018.10.027.

    Article  CAS  Google Scholar 

  34. A. B. Kashyout, H. M. A. Soliman, H. Shokry-Hassan, and A. M. Abousehly (2010). Fabrication of ZnO and ZnO: Sb nanoparticles for gas sensor applications. J Nanomater. https://doi.org/10.1155/2010/341841.

    Article  Google Scholar 

  35. X. L. Tang, S. L. Young, C. Y. Kung, M. C. Kao, H. Z. Chen, and C. J. Ou (2018). Nanostructural dependence of photoluminescence and photosensing properties in hydrothermally synthesized Mg-doped ZnO nanorod arrays. Thin Solid Films 649 (11), 75–80. https://doi.org/10.1016/j.tsf.2018.01.023.

    Article  CAS  Google Scholar 

  36. P. Fageria, R. Nazir, S. Gangopadhyay, H. C. Barshilia, and S. Pande (2015). Graphitic-carbon nitride support for the synthesis of shape-dependent ZnO and their application in visible light photocatalysts. RSC Adv. 5 (98), 80397–80409. https://doi.org/10.1039/c5ra12463h.

    Article  CAS  Google Scholar 

  37. I. L. Poul-Raj, et al. (2020). Enhancement of optoelectronic parameters of Nd-doped ZnO nanowires for photodetector applications. Opt. Mater. (Amst) 109 (110396), 2020. https://doi.org/10.1016/j.optmat.2020.110396.

    Article  CAS  Google Scholar 

  38. P. Ariyakkani, L. Suganya, and B. Sundaresan (2017). Investigation of the structural, optical and magnetic properties of Fe doped ZnO thin films coated on glass by sol-gel spin coating method. J. Alloys Compd. 695, 3467–3475. https://doi.org/10.1016/j.jallcom.2016.12.011.

    Article  CAS  Google Scholar 

  39. M. L. Myrick, M. N. Simcock, M. Baranowski, H. Brooke, S. L. Morgan, and J. N. McCutcheon (2011). The kubelka-munk diffuse reflectance formula revisited. Appl. Spectrosc. Rev. 46 (2), 140–165. https://doi.org/10.1080/05704928.2010.537004.

    Article  Google Scholar 

  40. A. M. Alsmadi, B. Salameh, L. L. Kerr, and K. F. Eid (2018). Influence of Antimony doping on the electronic, optical and luminescent properties of ZnO microrods. Phys. B Condens. Matter 545, 519–526. https://doi.org/10.1016/j.physb.2018.07.007.

    Article  CAS  Google Scholar 

  41. N. Fathima, N. Pradeep, and J. Balakrishnan (2019). Enhanced optical and electrical properties of antimony doped ZnO nanostructures based MSM UV photodetector fabricated on a flexible substrate. Mater. Sci. Semicond. Process. 90, 26–31. https://doi.org/10.1016/j.mssp.2018.10.002.

    Article  CAS  Google Scholar 

  42. M. A. Qamar, et al. (2021). Designing of highly active g-C3N4/Co@ZnO ternary nanocomposites for the disinfection of pathogens and degradation of the organic pollutants from wastewater under visible light. J. Environ. Chem. Eng. 9 (4), 105534. https://doi.org/10.1016/j.jece.2021.105534.

    Article  CAS  Google Scholar 

  43. M. A. Qamar, S. Shahid, M. Javed, S. Iqbal, M. Sher, and M. B. Akbar (2020). Highly efficient g-C3N4/Cr-ZnO nanocomposites with superior photocatalytic and antibacterial activity. J. Photochem. Photobiol. A Chem. 401, 112776. https://doi.org/10.1016/j.jphotochem.2020.112776.

    Article  CAS  Google Scholar 

  44. N. Kumaresan, M. M. A. Sinthiya, K. Ramamurthi, R. Ramesh Babu, and K. Sethuraman (2020). Visible light driven photocatalytic activity of ZnO/CuO nanocomposites coupled with rGO heterostructures synthesized by solid-state method for RhB dye degradation. Arab. J. Chem. 13 (2), 3910–3928. https://doi.org/10.1016/j.arabjc.2019.03.002.

    Article  CAS  Google Scholar 

  45. K. Ravichandran, N. Chidhambaram, and S. Gobalakrishnan (2016). Copper and Graphene activated ZnO nanopowders for enhanced photocatalytic and antibacterial activities. J. Phys. Chem. Solids 93, 82–90. https://doi.org/10.1016/j.jpcs.2016.02.013.

    Article  CAS  Google Scholar 

  46. A. Mohammad, K. Ahmad, A. Qureshi, M. Tauqeer, and S. M. Mobin (2018). Zinc oxide-graphitic carbon nitride nanohybrid as an efficient electrochemical sensor and photocatalyst. Sensors Actuators B Chem. 277, 467–476. https://doi.org/10.1016/j.snb.2018.07.086.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors extend their appreciation to the Deputyship for Research & Innovation, Ministry of Education in Saudi Arabia, for funding this research work the Project Number: IFP-KKU-2020/6.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. Ganesh or N. Chidhambaram.

Ethics declarations

Conflict of interest

The authors have no involvement in any organization or entity with any financial interest or non-financial in the subject matter or materials discussed in this manuscript. We also declare that this manuscript is original, and has neither been published nor is currently being considered for publication elsewhere. Further, we declare that the authors have no conflict of interest.

Ethical Approval

This article doesn't contain any studies involving animals performed by any authors. Also, this article does not have any studies involving human participants performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1150 kb)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ganesh, V., Yahia, I.S. & Chidhambaram, N. Facile Synthesis of ZnO:Sb/g-C3N4 Composite Materials for Photocatalysis Applications. J Clust Sci 34, 1659–1668 (2023). https://doi.org/10.1007/s10876-022-02336-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-022-02336-0

Keywords

Navigation