Skip to main content
Log in

Synthesis, Characterization and Remarkable Nonlinear Absorption of a Pyridyl Containing Symmetrical Porphyrin-Polyoxometalate Hybrid

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

In this manuscript, a pyridyl containing porphyrin, C46H36N8O4 (denoted as Tris@NTPP) and its derived polyoxometalate-porphyrin hybrid, [C4H9)4N]3[C41H26N7NHCO(NH)C(OCH2)3MnMo6 O18(OCH2)3C(NH)CONHN7 H26C41] (denoted as NTPP@POM) in which two pyridyl containing porphyrin moieties hanged onto one Anderson polyoxometalate, have been successfully synthesized and thoroughly characterized. Fluorescence quenching was observed in NTPP@POM as compared with its precursor Tris@NTPP inferring the transfer of electron/energy from porphyrin moiety to POM moiety. NTPP@POM showed notably enhanced nonlinear absorption (β = 2.32 × 10–5 esu) than Tris@NTPP (β = 0.73 × 10–5 esu). These NLO responses were associated with fluorescence decay mechanism which oriented the singlet excited(*S) states and triplet excited(*T) states of Tris@NTPP and NTPP@POM. Life time decay studies revealed that NTPP@POM (τ2 = 5.32 ns) were stayed for shorter time in excited triplet state than Tris@NTPP (τ2 = 10 ns), implying shorter life time led towards higher NLO responses.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1.
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. C. Kachris, K. Kanonakis, I. Tomkos, and I. E. E. E. Commun (2013). Mag. 51, 39–45.

    Google Scholar 

  2. G. Li, N. Bai, N. Zhao, and C. Xia (2014). Adv. Opt. Photonics 6, 413–487.

    Article  Google Scholar 

  3. D. Gounden, N. Nombona, and W. E. van Zyl (2020). Coord. Chem. Rev. 420.

    Article  CAS  Google Scholar 

  4. D. Brunner, M. C. Soriano, C. R. Mirasso, and I. Fischer (2013). Nat. Commun. 4, 1–7.

    Google Scholar 

  5. C. Bosshard, J. Hulliger, M. Florsheimer, and P. Gunter, Organic Nonlinear Optical Materials (CRC Press, Boca Raton, 2001).

    Google Scholar 

  6. S. Sathiyamoorthi and P. Srinivasan (2018). Mater. Res. Innov. 1, 8.

    Google Scholar 

  7. G. Bhuvaneswari, L. G. Prasad, and N. Prabhavathi (2017). Mater. Sci. Pol. 35, 667–672.

    Article  CAS  Google Scholar 

  8. F. Tessore, A. O. Biroli, G. Di Carlo, and M. Pizzotti (2018). Inorganics 6, 81.

    Article  Google Scholar 

  9. A. F. Pozharskii, A. T. Soldatenkov, and A. R. Katritzky, Heterocycles in Life and Society: An Introduction to Heterocyclic Chemistry, Biochemistry and Applications (Wiley, New York, 2011).

    Book  Google Scholar 

  10. L. Zeng, X. Guo, C. He, and C. Duan (2016). ACS Catal. 6, 7935–7947.

    Article  CAS  Google Scholar 

  11. M. O. Senge, M. Fazekas, E. G. Notaras, W. J. Blau, M. Zawadzka, O. B. Locos, and E. M. N. Mhuircheartaigh (2007). Adv. Mater. Lett. 19, 2737–2774.

    Article  CAS  Google Scholar 

  12. X. Yan, H. Liu, Y. Li, W. Chen, T. Zhang, Z. Zhao, G. Xing, and L. Chen (2019). Macromolecules 52, 7977–7983.

    Article  CAS  Google Scholar 

  13. S. D. Stranks, J. K. Sprafke, H. L. Anderson, and R. J. Nicholas (2011). ACS Nano 5, 2307–2315.

    Article  CAS  PubMed  Google Scholar 

  14. K. Wang, D. Qi, Y. Li, T. Wang, H. Liu, and J. Jiang (2019). Coord. Chem. Rev. 378, 188–206.

    Article  CAS  Google Scholar 

  15. K. Ogawa, T. Zhang, K. Yoshihara, and Y. Kobuke (2002). J. Am. Chem. Soc. 124, 22–23.

    Article  CAS  PubMed  Google Scholar 

  16. M. Kielmann and M. O. Senge (2019). Angew. Chem. Int. Ed. 58, 418–441.

    Article  CAS  Google Scholar 

  17. A. K. Mandal, M. Taniguchi, J. R. Diers, D. M. Niedzwiedzki, C. Kirmaier, J. S. Lindsey, D. F. Bocian, and D. Holten (2016). J. Phy. Chem. A 120, 9719–9731.

    Article  CAS  Google Scholar 

  18. N. Chaudhri, N. Grover, and M. Sankar (2017). Inorg. Chem. 56, 11532–11545.

    Article  CAS  PubMed  Google Scholar 

  19. J. F. Barata, M. G. A. P. Neves, M. A. F. Faustino, A. C. Tomé, and J. A. Cavaleiro (2017). Chem. Rev. 117, 3192–3253.

    Article  CAS  PubMed  Google Scholar 

  20. P. Liang, Y. Mi, J. Duan, Z. Yang, D. Wang, H. Cao, W. He, and H. Yang (2016). Chin. J. Chem. 14, 15.

    Google Scholar 

  21. S. Shetty and B. Singh (1997). Chem. Commun. 15, 1159–1160.

    Google Scholar 

  22. Y. Chi, H.-G. Xue, and S.-P. Guo (2020). Inorg. Chem. 59, 1547–1555.

    Article  CAS  PubMed  Google Scholar 

  23. M. Guillaume, B. Champagne, N. Markova, V. Enchev, and F. Castet (2007). J. Phys. Chem. A 111, 9914–9923.

    Article  CAS  PubMed  Google Scholar 

  24. T. Kinnibrugh, S. Bhattacharjee, P. Sullivan, C. Isborn, B. Robinson, and B. Eichinger (2006). J. Phys. Chem. B 110, 13512–13522.

    Article  CAS  PubMed  Google Scholar 

  25. A. Sarkar, J. J. Pak, G. W. Rayfield, and M. M. Haley (2001). J. Mater. Chem. 11, 2943–2945.

    Article  CAS  Google Scholar 

  26. B. J. Coe, J. Fielden, S. P. Foxon, J. A. Harris, M. Helliwell, B. S. Brunschwig, I. Asselberghs, K. Clays, J. Garín, and J. Orduna (2010). J. Am. Chem. Soc. 132, 10498–10512.

    Article  CAS  PubMed  Google Scholar 

  27. K. Ogawa and Y. Kobuke (2000). Angew. Chem. Int. Ed. 39, 4070–4073.

    Article  CAS  Google Scholar 

  28. E. G. Notaras, M. Fazekas, J. J. Doyle, W. J. Blau, and M. O. Senge (2007). Chem. Commun. 15, 2166–2168.

    Article  Google Scholar 

  29. A. Müller, F. Peters, M. T. Pope, and D. Gatteschi (1998). Chem. Rev. 98, 239–272.

    Article  PubMed  Google Scholar 

  30. N. Mizuno, C. Nozaki, I. Kiyoto, and M. Misono (1998). J. Am. Chem. Soc. 20, 9267–9272.

    Article  Google Scholar 

  31. H. Li, S. Pang, S. Wu, X. Feng, K. Müllen, and C. Bubeck (2011). J. Am. Chem. Soc. 33, 9423–9429.

    Article  Google Scholar 

  32. J.-Y. Niu, X.-Z. You, C.-Y. Duan, H.-K. Fun, and Z.-Y. Zhou (1996). Inorg. Chem. 35, 4211–4217.

    Article  CAS  Google Scholar 

  33. H. M. Asif, Y. Zhou, L. Zhang, N. Shaheen, D. Yang, J. Li, Y. Long, A. Iqbal, and Y. Li (2017). Inorg. Chem. 56, 9436–9447.

    Article  CAS  PubMed  Google Scholar 

  34. Z. Shi, Y. Zhou, L. Zhang, C. Mu, H. Ren, D. Yang, and H. M. Asif (2014). RSC Adv. 4, 50277–50284.

    Article  CAS  Google Scholar 

  35. A. Iqbal, H. M. Asif, Y. Zhou, L. Zhang, T. Wang, F. K. Shehzad, and X. Ren (2019). Inorg. Chem. 58, 8763–8774.

    Article  CAS  PubMed  Google Scholar 

  36. S. U. Hassan, H. M. Asif, Y. Zhou, L. Zhang, N. Qu, J. Li, and Z. J. T. J. O. C. C. Shi (2016). J. Phys. Chem. 20, 27587–27599.

    Google Scholar 

  37. Z. Shi, Y. Zhou, L. Zhang, S. U. Hassan, and N. Qu (2014). J. Phys. Chem. C 118, 6413–6422.

    Article  CAS  Google Scholar 

  38. S. U. Hassan, F. Nawaz, Z. U. H. Khan, A. Firdous, M. A. Farid, and M. S. Nazir (2018). Opt. Mater. 86, 106–112.

    Article  Google Scholar 

  39. F. K. Shehzad, A. Iqbal, Y. Zhou, L. Zhang, T. Wang, and X. Ren (2020). J. Phys. Chem. C 124, 9442–9450.

    Article  Google Scholar 

  40. X. Wang, D. Wang, H. Gao, Z. Yang, H. Cao, H. Yang, W. He, H. Wang, J. Gu, and H. Hu (2016). J. Nonlinear Opt. Phys. Mater. 25, 1650014.

    Article  CAS  Google Scholar 

  41. S. Vanhaecht, T. Quanten, and T. N. Parac-Vogt (2017). Inorg. Chem. 56, 3095–3101.

    Article  CAS  PubMed  Google Scholar 

  42. H. M. Asif, A. Iqbal, Y. Zhou, L. Zhang, T. Wang, M. I. U. Farooqi, and R. J. D. Sun (2021). Pigments 184.

    Article  CAS  Google Scholar 

  43. A. P. Ginsberg, Inorganic Syntheses (Wiley, New York, 1990).

    Book  Google Scholar 

  44. C. Allain, D. Schaming, N. Karakostas, M. Erard, J.-P. Gisselbrecht, S. Sorgues, I. Lampre, L. Ruhlmann, and B. Hasenknopf (2013). Dalton Trans. 42, 2745–2754.

    Article  CAS  PubMed  Google Scholar 

  45. J. B. Bush Jr. and H. Finkbeiner (1968). J. Am. Chem. Soc. 90, 5903–5905.

    Article  CAS  Google Scholar 

  46. M. R. Derrick, D. Stulik, and J. M. Landry, Infrared Spectroscopy in Conservation Science (Getty Publications, Malibu, 2000).

    Google Scholar 

  47. R. G. Finke, B. Rapko, R. J. Saxton, and P. J. Domaille (1986). J. Am. Chem. Soc. 108, 2947–2960.

    Article  CAS  Google Scholar 

  48. Y.-F. Song, D.-L. Long, S. E. Kelly, and L. Cronin (2008). Inorg. Chem. 47, 9137–9139.

    Article  CAS  PubMed  Google Scholar 

  49. A. Tsuda and A. Osuka (2001). Science 293, 79–82.

    Article  CAS  PubMed  Google Scholar 

  50. W. Lin, L. Yuan, L. Long, C. Guo, and J. Feng (2008). Adv. Funct. Mater. 18, 2366–2372.

    Article  CAS  Google Scholar 

  51. J. B. Birks and D. Dyson (1963). Proc. R. Soc. A 275, 135–148.

    CAS  Google Scholar 

  52. S. Strickler and R. A. Berg (1962). J. Chem. Phys. 37, 814–822.

    Article  CAS  Google Scholar 

  53. B. Zhang, G. Liu, Y. Chen, L. J. Zeng, C. X. Zhu, K. G. Neoh, C. Wang, and E. T. Kang (2011). Chem. Eur. J. 17, 13646–13652.

    Article  CAS  PubMed  Google Scholar 

  54. J. Rodriguez, C. Kirmaier, and D. Holten (1989). J. Am. Chem. Soc. 111, 6500–6506.

    Article  CAS  Google Scholar 

  55. S. Bhattacharya, C. Biswas, S. S. K. Raavi, J. V. S. Krishna, N. V. Krishna, L. Giribabu, and V. R. Soma (2019). J. Phys. Chem. C 123, 11118–11133.

    Article  CAS  Google Scholar 

  56. L. H. Cocca, F. Gotardo, L. F. Sciuti, T. V. Acunha, B. A. Iglesias, and L. de Boni (2018). Chem. Phys. Lett. 708, 1–10.

    Article  CAS  Google Scholar 

  57. D. N. Rao (2003). Opt. Mater. 21, 45–49.

    Article  Google Scholar 

  58. A. Nayak, J. Park, K. De Mey, X. Hu, D. N. Beratan, K. Clays, and M. J. Therien (2021). Inorg. Chem. 15, 58.

    Google Scholar 

  59. Y. Venkatesh, M. Venkatesan, B. Ramakrishna, and P. R. Bangal (2016). J. Phys. Chem. B 120, 9410–9421.

    Article  CAS  PubMed  Google Scholar 

  60. M. Enescu, K. Steenkeste, F. Tfibel, and M.-P. Fontaine-Aupart (2002). Phys. Chem. Chem. Phys. 4, 6092–6099.

    Article  CAS  Google Scholar 

  61. J. E. Riggs and Y.-P. Sun (1999). J. Phys. Chem. A 103, 485–495.

    Article  CAS  Google Scholar 

  62. G. Jagannath, B. Eraiah, A. Gaddam, H. Fernandes, D. Brazete, K. Jayanthi, K. N. Krishnakanth, S. Venugopal Rao, J. M. Ferreira, and K. Annapurna (2019). J. Phys. Chem. C 123, 5591–5602.

    Article  CAS  Google Scholar 

  63. A. Seetharaman, D. Sivasubramanian, V. Gandhiraj, and V. R. Soma (2017). J. Phys. Chem. C 121, 24192–24205.

    Article  CAS  Google Scholar 

  64. S. S. K. Raavi, J. Yin, G. Grancini, C. Soci, V. R. Soma, G. Lanzani, and L. Giribabu (2015). J. Phys. Chem. C 119, 28691–28700.

    Article  CAS  Google Scholar 

  65. M.-P. Santoni, A. K. Pal, G. S. Hanan, M.-C. Tang, A. Furtos, and B. Hasenknopf (2014). Dalton Trans. 43, 6990–6993.

    Article  CAS  PubMed  Google Scholar 

  66. D. N. Christodoulides, I. C. Khoo, G. J. Salamo, G. I. Stegeman, and E. W. Van Stryland (2010). Adv. Opt. Photonics 2, 60–200.

    Article  CAS  Google Scholar 

  67. Y. Li, T. M. Pritchett, J. Huang, M. Ke, P. Shao, and W. Sun (2008). J. Phys. Chem. A. 112, 7200–7207.

    Article  CAS  PubMed  Google Scholar 

  68. A. Ulman and J. Manassen (1975). J. Am. Chem. Soc. 97, 6540–6544.

    Article  CAS  PubMed  Google Scholar 

  69. M. Sheik-Bahae, A. A. Said, T.-H. Wei, D. J. Hagan, and E. W. Van Stryland (1990). IEEE J. Quantum Electron. 26, 760–769.

    Article  CAS  Google Scholar 

  70. M. Sheik-Bahae, A. A. Said, and E. W. Van Stryland (1989). Opt. Lett. 14, 955–957.

    Article  CAS  PubMed  Google Scholar 

  71. G. Yang, W. Guan, L. Yan, Z. Su, L. Xu, and E.-B. Wang (2006). J. Phys. Chem. B 110, 23092–23098.

    Article  CAS  PubMed  Google Scholar 

  72. B. K. Periyasamy, R. S. Jebas, N. Gopalakrishnan, and T. Balasubramanian (2007). Mater. Lett. 61, 4246–4249.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the financial support of the Natural Science Foundation of China. Prof. Xue Duan of Beijing University of Chemical Technology is greatly acknowledged for his kind support.

Author information

Authors and Affiliations

Authors

Contributions

The manuscript was written through contributions of all authors. All authors have given approval to the final version of the manuscript.

Corresponding authors

Correspondence to Yunshan Zhou or Lijuan Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 369 kb)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asif, H.M., Khan, M.A., Zhou, Y. et al. Synthesis, Characterization and Remarkable Nonlinear Absorption of a Pyridyl Containing Symmetrical Porphyrin-Polyoxometalate Hybrid. J Clust Sci 34, 1615–1624 (2023). https://doi.org/10.1007/s10876-022-02315-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-022-02315-5

Keywords

Navigation