Skip to main content
Log in

A DFT Comparative Study of Cyclo[18] Nanorings: Carbon, BN and BCN

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

Motivated by recent experimental and theoretical results for the stable form of cyclo[18]carbon (CC-18) we propose and investigate, using Density Functional Theory (DFT) formalism, the structural and thermal stability of two new molecular structures (nanorings) which are inorganic analogues of the cyclo[18]carbon. The two proposed molecules are cyclo[18]boron nitride (BN-18), and cyclo[18]boron carbon nitride (BCN-18). We investigate also their electronic properties, vibrational spectra, thermodynamic potentials and optical absorptions comparing the results against those found for the CC-18 nanoring. It was found that the nanorings are stable, insulators and apolar. Bond order analysis reveals that these nanorings exhibit a structure of alternating triple or double, and single bonds depending on the structure with short and long bonds. Due to the obtained results of thermodynamic properties, we can suggest that two nanorings can be stable and potentially synthesized: BN-18 and BCN-18. The highlight goes to the BN-18 nanoring with a particular highest thermal stability. Further, we showed that any nanoring absorbs in different regions of UV spectra. Thus, these nanorings could be suitable for development in optoelectronic molecular devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. H. W. Kroto, J. R. Heath, S. C. O’Brien, R. F. Curl, and R. E. Smalley (1985). Nature 318, 162.

    Article  CAS  Google Scholar 

  2. S. Iijima (1991). Nature 354, 56.

    Article  CAS  Google Scholar 

  3. S. Iijima and T. Ichihashi (1993). Nature 363, 603.

    Article  CAS  Google Scholar 

  4. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov (2004). Science 306, 666.

    Article  CAS  PubMed  Google Scholar 

  5. J. Narayan and A. Bhaumik (2015). J. Appl. Phys. 118, 215303.

    Article  Google Scholar 

  6. G. Povie, Y. Segawa, T. Nishihara, Y. Miyauchi, and K. Itami (2017). Science 356, 172.

    Article  CAS  PubMed  Google Scholar 

  7. K. Y. Cheung, S. Gui, C. Deng, H. Liang, Z. Xia, Z. Liu, L. Chi, and Q. Miao (2019). Chem 5, 838.

    Article  CAS  Google Scholar 

  8. K. Kaiser, L. M. Scriven, F. Schulz, P. Gawel, L. Gross, and H. L. Anderson (2019). Science 365, 1299.

    Article  CAS  PubMed  Google Scholar 

  9. R. Hoffmann (1966). Tetrahedron 22, 521.

    Article  CAS  Google Scholar 

  10. F. Diederich, Y. Rubin, C. B. Knobler, R. L. Whetten, K. E. Schriver, K. N. Houk, and Y. Li (1989). Science 245 (4922), 1088.

    Article  CAS  PubMed  Google Scholar 

  11. F. Diederich (1994). Nature 369 (6477), 199.

    Article  CAS  Google Scholar 

  12. F. Diederich and M. Kivala (2010). Adv. Mater. 22, 803.

    Article  CAS  PubMed  Google Scholar 

  13. D. Castelvecchi (2019). Nature 572, 426.

    Article  CAS  PubMed  Google Scholar 

  14. F. Pichierri (2020). Chem. Phys. Lett. 738, 136860.

    Article  CAS  Google Scholar 

  15. A. E. Raeber and D. A. Mazziotti (2020). Phys. Chem. Chem. Phys. 22, 23998.

    Article  CAS  PubMed  Google Scholar 

  16. Z. S. Pereira and E. Z. Silva (2020). J. Phys. Chem. A 124, 1152.

    Article  CAS  PubMed  Google Scholar 

  17. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian 16 Revision C.01 (Gaussian Inc., Wallingford, 2016).

    Google Scholar 

  18. J.-D. Chai and M. Head-Gordon (2008). Phys. Chem. Chem. Phys. 10, 6615.

    Article  CAS  PubMed  Google Scholar 

  19. F. Weigend and R. Ahlrichs (2005). Phys. Chem. Chem. Phys. 7, 3297.

    Article  CAS  PubMed  Google Scholar 

  20. F. Weigend (2006). Accurate coulomb-fitting basis sets for h to rn. Phys. Chem. Chem. Phys. 8, 1057.

    Article  CAS  PubMed  Google Scholar 

  21. B. Delley (1990). J. Chem. Phys. 92, 508.

    Article  CAS  Google Scholar 

  22. B. Delley (2000). J. Chem. Phys. 113, 7756.

    Article  CAS  Google Scholar 

  23. T. Lu and F. Chen (2012). J. Comput. Chem. 33, 580.

    Article  PubMed  Google Scholar 

  24. I. Mayer (1983). Chem. Phys. Lett. 97, 270.

    Article  CAS  Google Scholar 

  25. K. B. Wiberg (1968). Tetrahedron 24, 1083.

    Article  CAS  Google Scholar 

  26. I. Mayer and P. Salvador (2004). Chem. Phys. Lett. 383, 368.

    Article  CAS  Google Scholar 

  27. T. Lu and F. Chen (2013). J. Phys. Chem. A 117, 3100.

    Article  CAS  PubMed  Google Scholar 

  28. M. Elstner, D. Porezag, G. Jungnickel, J. Elsner, M. Haugk, T. Frauenheim, S. Suhai, and G. Seifert (1998). Phys. Rev. B 58, 7260.

    Article  CAS  Google Scholar 

  29. B. Aradi, B. Hourahine, and T. Frauenheim (2007). J. Phys. Chem. A 111, 5678.

    Article  CAS  PubMed  Google Scholar 

  30. B. Hourahine, B. Aradi, V. Blum, F. Bonafé, A. Buccheri, C. Camacho, C. Cevallos, M. Y. Deshaye, T. Dumitrică, A. Dominguez, S. Ehlert, M. Elstner, T. van der Heide, J. Hermann, S. Irle, J. J. Kranz, C. Köhler, T. Kowalczyk, T. Kubař, I. S. Lee, V. Lutsker, R. J. Maurer, S. K. Min, I. Mitchell, C. Negre, T. A. Niehaus, A. M. N. Niklasson, A. J. Page, A. Pecchia, G. Penazzi, M. P. Persson, J. Řezáč, C. G. Sánchez, M. Sternberg, M. Stöhr, F. Stuckenberg, A. Tkatchenko, V. W. Yu, and T. Frauenheim (2020). J. Chem. Phys. 152, 124101.

    Article  CAS  PubMed  Google Scholar 

  31. S. Nosé (1984). J. Chem. Phys. 81, 511.

    Article  Google Scholar 

  32. W. Hoover (1985). Phys. Rev. A 31, 1695.

    Article  CAS  Google Scholar 

  33. T. Hirano, Mopac manual, in MOPAC Manual (1993).

  34. W. D. S. A. Miranda, S. S. Coutinho, M. S. Tavares, E. Moreira, and D. L. Azevedo (2016). J. Mol. Struct. 1122, 299.

    Article  CAS  Google Scholar 

  35. T. Lu and Q. Chen (2021). Comput. Theor. Chem. 1200, 113249.

    Article  CAS  Google Scholar 

  36. Z. Liu, T. Lu, and Q. Chen (2020). Carbon 165, 461.

    Article  CAS  Google Scholar 

  37. W. D. S. A. Miranda, E. Moreira, M. S. Tavares, S. S. Coutinho, R. Gargano, and D. L. Azevedo (2021). Appl. Phys. A 127, 1.

    Article  Google Scholar 

  38. L. S. Barbosa, E. Moreira, A. R. Lopes, A. L. A. Fonseca, and D. L. Azevedo (2021). J. Mol. Graph. Model. 103, 107820.

    Article  CAS  PubMed  Google Scholar 

  39. E. Matito, J. Poater, M. Solà, M. Duran, and P. Salvador (2005). J. Phys. Chem. A 109, 9904.

    Article  CAS  PubMed  Google Scholar 

  40. T. Koopmans (1934). Physica 1, 104.

    Article  Google Scholar 

  41. P. K. Chattaraj and A. Poddar (1999). J. Phys. Chem. A 103, 8691.

    Article  CAS  Google Scholar 

  42. J.-L. Calais (1993). Int. J. Quantum Chem. 47, 101.

    Article  Google Scholar 

  43. R. G. Pearson (1988). Inorg. Chem. 27, 734.

    Article  CAS  Google Scholar 

  44. M. Hoque and M. Uzzaman (2018). Int. J. Sci. Res. Manag. 6, 12.

    Google Scholar 

  45. B. Lukose, A. Kuc, J. Frenzel, and T. Heine (2010). Beilstein J. Nanotechnol. 1, 60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. J. Frenzel, A.F. Oliveira, N. Jardillier, T. Heine, and G. Seifert, Semi-relativistic, self-consistent charge slater-koster tables for density-functional based tight-binding(dftb) for materials science simulations (2004–2009).

  47. A. H. Larsen, J. J. Mortensen, J. Blomqvist, I. E. Castelli, R. Christensen, M. Dułak, J. Friis, M. N. Groves, B. Hammer, C. Hargus, E. D. Hermes, P. C. Jennings, P. B. Jensen, J. Kermode, J. R. Kitchin, E. L. Kolsbjerg, J. Kubal, K. Kaasbjerg, S. Lysgaard, J. B. Maronsson, T. Maxson, T. Olsen, L. Pastewka, A. Peterson, C. Rostgaard, J. Schiøtz, O. Schütt, M. Strange, K. S. Thygesen, T. Vegge, L. Vilhelmsen, M. Walter, Z. Zeng, and K. W. Jacobsen (2017). J. Phys. Condens. Matter 29, 273002.

    Article  Google Scholar 

  48. S. R. Bahn and K. W. Jacobsen (2002). Comput. Sci. Eng. 4, 56.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was partially financed by the Brazilian Research Agencies CAPES and CNPq. The authors also thank the Distrito Federal Research Foundation FAPDF for financial and equipment support (Edital 04/2017). E. Moreira acknowledges the support by the Maranhão Research Foundation – FAPEMA (Universal-01108/19). LVL through PNPD/CAPES for grant \(\#\)88887.319028/2019-00. R. Paupitz acknowledges Brazilian agencies FAPESP (grant \(\#\)2018/03961-5) and CNPq (grants \(\#\)437034/2018-6, \(\#\) 315008/2020-2). David L. Azevedo acknowledges the support by the Mato Grosso Research Foundation FAPEMAT for financial support through the Grant PRONEX CNPq/FAPEMAT 850109/2009. The authors also thank the Secretaria de Estado de Educação do Distrito Federal (SEEDF), Centro Nacional de Processamento de Alto Desempenho em São Paulo (CENAPAD-SP), CNPq (Chamada 04/2021-PQ) and Fundação de Apoio àPesquisa do Distrito Federal (FAPDF 04/2017)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ricardo Paupitz.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (pdf 248 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barbosa, L.S., Moreira, E., Villegas-Lelovsky, L. et al. A DFT Comparative Study of Cyclo[18] Nanorings: Carbon, BN and BCN. J Clust Sci 34, 1465–1473 (2023). https://doi.org/10.1007/s10876-022-02313-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-022-02313-7

Keywords

Navigation