Skip to main content
Log in

Adsorption Performance of Zinc Semiconductor Nanoparticles in Tetracycline Removal

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

Zinc semiconductor nanoparticles have been employed as potential adsorbents for the remediation of organic pollutants. However, the influence of its non-metallic components on the adsorption performance of zinc semiconductor nanoparticles is yet to be understood. Herein, using zinc oxide (ZnO) and zinc chalcogenide (ZnS) as adsorbents, we demonstrated the effect of O and S constituents on the adsorption performance of zinc semiconductor nanoparticles. The morphology, crystallinity, surface area, thermal stability, and the functionals group of both samples were investigated using scanning electron microscopy (SEM), X-ray diffraction spectroscopy (XRD), Brunauer–Emmett–Teller (BET), thermogravimetric analysis (TGA), Fourier Transform Resonance Spectroscopy (FT-IR), respectively. Although the surface area of ZnS was observed to be 26 times that of ZnO, the Langmuir adsorption capacity for (TC) of the latter (78.70 mg/g) was significantly higher than the former (47.79 mg/g). The enhanced adsorption performance by ZnO is ascribed to its high porosity and broader point of zero charges (PZC). The present study establishes the impact of S and O on the adsorption performance of zinc nanoparticle adsorbents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 2

Similar content being viewed by others

Data Availability

Not applicable.

References

  1. E. Leiva, C. Tapia, and C. Rodríguez (2021). Molecules 26 (9), 2713. https://doi.org/10.3390/molecules26092713.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. N. Cheng, et al. (2021). Environ. Pollut. 273, 116448. https://doi.org/10.1016/j.envpol.2021.116448.

    Article  CAS  PubMed  Google Scholar 

  3. K. Igenepo, A. Abdul, A. Timothy, and I. Pearl (2021). Chem. Phys. Lett. 776 (February), 138725. https://doi.org/10.1016/j.cplett.2021.138725.

    Article  CAS  Google Scholar 

  4. A. Waheed, N. Baig, N. Ullah, and W. Falath (2021). J. Environ. Manag. 287 (March), 112360.

    Article  CAS  Google Scholar 

  5. Y. Dehmani, H. Lgaz, A. A. Alrashdi, T. Lamhasni, S. Abouarnadasse, and I. M. Chung (2021). J. Mol. Liq. 324, 114993. https://doi.org/10.1016/j.molliq.2020.114993.

    Article  CAS  Google Scholar 

  6. S. Ahuja, Overview: Sustaining Water, the World’s Most Crucial Resource (Elsevier Inc., Amsterdam, 2016). https://doi.org/10.1016/B978-0-12-809330-6.00001-5. .

    Book  Google Scholar 

  7. D. Nabi, I. Aslam, and I. A. Qazi (2009). J. Environ. Sci. 21 (3), 402. https://doi.org/10.1016/S1001-0742(08)62283-4.

    Article  CAS  Google Scholar 

  8. K. Arola, B. Van der Bruggen, M. Mänttäri, and M. Kallioinen (2019). Crit. Rev. Environ. Sci. Technol. 49 (22), 2049. https://doi.org/10.1080/10643389.2019.1594519.

    Article  CAS  Google Scholar 

  9. H. Peng and J. Guo (2020). Environ. Chem. Lett. 18 (6), 2055. https://doi.org/10.1007/s10311-020-01058-x.

    Article  CAS  Google Scholar 

  10. S. N. Malik, P. C. Ghosh, A. N. Vaidya, and S. N. Mudliar (2020). J Water Process Eng. https://doi.org/10.1016/j.jwpe.2020.101193.

    Article  Google Scholar 

  11. K. I. John, A. T. Adeleye, J. O. Ighalo, and A. G. Adeniyi (2021). Environ. Sci. Pollut. Res. 29 (8), 11756.

    Article  Google Scholar 

  12. G. Ghasemzadeh, M. Momenpour, and F. Omidi (2014). Front Environ. Sci. Eng. 8 (4), 471. https://doi.org/10.1007/s11783-014-0654-0.

    Article  CAS  Google Scholar 

  13. I. Khan, K. Saeed, and I. Khan (2019). Arab. J. Chem. 12 (7), 908. https://doi.org/10.1016/j.arabjc.2017.05.011.

    Article  CAS  Google Scholar 

  14. A. Ivask, K. Kasemets, M. Mortimer, and A. Kahru (2013). Arch Toxicol. https://doi.org/10.1007/s00204-013-1079-4.

    Article  PubMed  PubMed Central  Google Scholar 

  15. P. P. Singh and Ambika, Environmental Remediation by Nanoadsorbents-Based Polymer Nanocomposite (Elsevier Inc., Amsterdam, 2018). https://doi.org/10.1016/B978-0-12-811033-1.00010-X. .

    Book  Google Scholar 

  16. I. Corsi, et al. (2018). Ecotoxicol. Environ. Saf. 154 (May 2017), 237. https://doi.org/10.1016/j.ecoenv.2018.02.037.

    Article  CAS  PubMed  Google Scholar 

  17. F. D. Guerra, M. F. Attia, D. C. Whitehead, and F. Alexis (2018). Molecules 23 (7), 1–23. https://doi.org/10.3390/molecules23071760.

    Article  CAS  Google Scholar 

  18. Y. H. Teow and A. W. Mohammad (2019). Desalination. https://doi.org/10.1016/j.desal.2017.11.041.

    Article  Google Scholar 

  19. X. Zhang and Y. Liu (2020). Environ Sci: Nano. https://doi.org/10.1039/C9EN01341E.

    Article  Google Scholar 

  20. Y. Liu, X. Zeng, X. Hu, J. Hu, and X. Zhang (2019). J. Chem. Technol. Biotechnol. 94 (1), 22. https://doi.org/10.1002/jctb.5779.

    Article  CAS  Google Scholar 

  21. M. Nagpal and R. Kakkar (2019). Sep. Purif. Technol. 211 (October), 522. https://doi.org/10.1016/j.seppur.2018.10.016.

    Article  CAS  Google Scholar 

  22. A. M. Awad, et al. (2020). J. Mol. Liq. 301, 112335. https://doi.org/10.1016/j.molliq.2019.112335.

    Article  CAS  Google Scholar 

  23. M. Sadeghi and Z. Rafiee (2021). High Perform. Polym. 33 (1), 22. https://doi.org/10.1177/0954008320939144.

    Article  CAS  Google Scholar 

  24. E. Y. Shaba, J. O. Jacob, J. O. Tijani, and M. A. T. Suleiman, A Critical Review of Synthesis Parameters Affecting the Properties of Zinc Oxide Nanoparticle and Its Application in Wastewater Treatment, vol. 11(2) (Springer, Berlin, 2021).

    Google Scholar 

  25. K. P. Sapkota, I. Lee, M. A. Hanif, M. A. Islam, and J. R. Hahn (2019). Catalysts. https://doi.org/10.3390/catal906049.

    Article  Google Scholar 

  26. J. Ma, et al. (2019). Nano Energy 62 (May), 376. https://doi.org/10.1016/j.nanoen.2019.05.058.

    Article  CAS  Google Scholar 

  27. L. Zhang, et al. (2014). ACS Appl. Mater. Interfaces 6, 3623.

    Article  CAS  PubMed  Google Scholar 

  28. H. Wang, C. Xie, W. Zhang, S. Cai, Z. Yang, and Y. Gui (2007). J. Hazard. Mater. 141 (3), 645. https://doi.org/10.1016/j.jhazmat.2006.07.021.

    Article  CAS  PubMed  Google Scholar 

  29. M. O. Omorogie, et al. (2020). Biomass Convers. Biorefinery 10 (4), 959. https://doi.org/10.1007/s13399-019-00460-y.

    Article  CAS  Google Scholar 

  30. S. Agarwal, et al. (2016). J. Mol. Liq. 218, 191. https://doi.org/10.1016/j.molliq.2016.02.060.

    Article  CAS  Google Scholar 

  31. A. M. Abodif, et al. (2020). ACS Omega 5 (23), 13630. https://doi.org/10.1021/acsomega.0c00619.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. C. K. Aslani and O. Amik (2021). Appl. Radiat. Isot. 168 (October 2020), 109474. https://doi.org/10.1016/j.apradiso.2020.109474.

    Article  CAS  PubMed  Google Scholar 

  33. J. G. Outram, S. J. Couperthwaite, W. Martens, and G. J. Millar (2021). Sep. Purif. Technol. 258 (P1), 118005. https://doi.org/10.1016/j.seppur.2020.118005.

    Article  CAS  Google Scholar 

  34. A. C. Mohan and B. Renjanadevi (2016). Procedia Technol. 24, 761. https://doi.org/10.1016/j.protcy.2016.05.078.

    Article  Google Scholar 

  35. H. R. Rajabi, F. Sajadiasl, H. Karimi, and Z. M. Alvand (2020). J. Mater. Res. Technol. 9 (6), 15638. https://doi.org/10.1016/j.jmrt.2020.11.017.

    Article  CAS  Google Scholar 

  36. G. Nabi, et al. (2020). Ceram. Int. 46 (17), 27601. https://doi.org/10.1016/j.ceramint.2020.07.254.

    Article  CAS  Google Scholar 

  37. M. Alhaddad, R. M. Mohamed, and M. H. H. Mahmoud (2021). ACS Omega 6 (12), 8717. https://doi.org/10.1021/acsomega.1c00697.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. F. M. Mohammadi and N. Ghasemi (2018). J. Nanostruct. Chem. 8 (1), 93. https://doi.org/10.1007/s40097-018-0257-6.

    Article  CAS  Google Scholar 

  39. P. C. Nagajyothi, M. Pandurangan, M. Veerappan, D. H. Kim, T. V. M. Sreekanth, and J. Shim (2018). Mater. Lett. 216, 58. https://doi.org/10.1016/j.matlet.2017.12.081.

    Article  CAS  Google Scholar 

  40. N. Jayarambabu, B. S. Kumari, K. V. Rao, and Y. T. Prabhu (2014). Int. J. Curr. Eng. Technol. 4 (5), 2347.

    Google Scholar 

  41. M. Khatami, H. Q. Alijani, H. Heli, and I. Sharifi (2018). Ceram. Int. 44 (13), 15596. https://doi.org/10.1016/j.ceramint.2018.05.224.

    Article  CAS  Google Scholar 

  42. G. Zhang, S. Wei, and A. M. Belcher (2018). ACS Appl. Nano Mater. 1 (10), 5631. https://doi.org/10.1021/acsanm.8b01254.

    Article  CAS  Google Scholar 

  43. V. Y. Zenou and S. Bakardjieva (2018). Mater. Charact. 144 (May), 287–296. https://doi.org/10.1016/j.matchar.2018.07.022.

    Article  CAS  Google Scholar 

  44. J. Li, D. Liu, Y. Yao, Y. Cai, and X. Guo (2013). Northeastern China 31 (2), 267. https://doi.org/10.1260/0144-5987.31.2.267.

    Article  CAS  Google Scholar 

  45. F. Akbari Beni, A. Gholami, A. Ayati, M. Niknam Shahrak, and M. Sillanpää (2020). Microporous Mesoporous Mater. 303 (December 2019), 6–14. https://doi.org/10.1016/j.micromeso.2020.110275.

    Article  CAS  Google Scholar 

  46. S. Bekkouche, M. Bouhelassa, N. H. Salah, and F. Z. Meghlaoui (2004). Desalination 166, 355–362.

    Article  CAS  Google Scholar 

  47. W. Wang, M. Gao, M. Cao, J. Dan, and H. Yang (2020). Sci Total Environ. https://doi.org/10.1016/j.scitotenv.2020.143542.

    Article  PubMed  PubMed Central  Google Scholar 

  48. H. Liu, G. Xu, and G. Li (2020). Sci Total Environ. https://doi.org/10.1016/j.scitotenv.2020.141492.

    Article  PubMed  PubMed Central  Google Scholar 

  49. G. Zhang, S. Wei, and A. M. Belcher (2018). ACS Appl. Nano Mater. 1, 5631. https://doi.org/10.1021/acsanm.8b01254.

    Article  CAS  Google Scholar 

  50. Z. Qu, et al. (2019). Engineering. https://doi.org/10.1016/j.eng.2019.06.001.

    Article  Google Scholar 

  51. G. Yang, et al. (2020). Chemosphere 239, 124831. https://doi.org/10.1016/j.chemosphere.2019.124831.

    Article  CAS  PubMed  Google Scholar 

  52. D. Qiao, Z. Li, J. Duan, and X. He (2020). Chem. Eng. J. 400 (April), 125952. https://doi.org/10.1016/j.cej.2020.125952.

    Article  CAS  Google Scholar 

  53. W. Wang, M. Gao, M. Cao, X. Liu, H. Yang, and Y. Li (2021). Bioresour. Technol. 332 (March), 125059. https://doi.org/10.1016/j.biortech.2021.125059.

    Article  CAS  PubMed  Google Scholar 

  54. Y. Ma, et al. (2021). Bioresour. Technol. 319 (October), 2020. https://doi.org/10.1016/j.biortech.2020.124199.

    Article  CAS  Google Scholar 

  55. J. Dai, X. Meng, Y. Zhang, and Y. Huang (2020). Bioresour. Technol. 311 (April), 123455. https://doi.org/10.1016/j.biortech.2020.123455.

    Article  CAS  PubMed  Google Scholar 

  56. J. Chang, et al. (2020). ACS Omega 5 (7), 3467–3477. https://doi.org/10.1021/acsomega.9b03781.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. M. Liu, L. An Hou, S. Yu, B. Xi, Y. Zhao, and X. Xia (2013). Chem. Eng. J. 223 (1), 678. https://doi.org/10.1016/j.cej.2013.02.088.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Department of Pure and Applied Chemistry, College of Natural and Applied Sciences, Veritas University, P.M.B. 5171, Abuja, Nigeria.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

KJI: Conceptualization and Writing-Original draft preparation. LAS, AMI, and AAA: Methodology. DA: Investigation. AOO: Validation & Supervision. ATA: Review & editing. JOB: Review & editing. OOO: Review & editing. ME:Writing-review & editing.

Corresponding authors

Correspondence to Aderemi Timothy Adeleye or Mohammed Elawad.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Ethics Approval

This article does not contain any studies involving human or animal subjects.

Consent to Participate

All authors duly participated.

Consent for Publication

All authors hereby consent to publish this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

John, K.I., Agbor, D., Sani, L.A. et al. Adsorption Performance of Zinc Semiconductor Nanoparticles in Tetracycline Removal. J Clust Sci 34, 1355–1367 (2023). https://doi.org/10.1007/s10876-022-02312-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-022-02312-8

Keywords

Navigation