Skip to main content

Advertisement

Log in

Hydrogen Adsorption on Ti–V Binary and Ti–V–Al Ternary Alloys of Ti11 Cluster

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

Aiming to unravel the effect of alloying on the hydrogen adsorption mechanism, we perform a comparative analysis of the sequential hydrogen loading over Ti11, binary Ti10V, and Ti6VAl4 ternary alloy clusters. For each cluster, the variation of adsorption energy as a function of hydrogen atom coverage was calculated up to 20 hydrogen molecules. The results show that the adsorption of H2 on pure and alloy clusters occurs in a similar fashion including three phases; (i) three-fold and subsequent two-fold dissociative adsorption, (ii) non-dissociative hydrogen adsorption through the Kubas interaction, (iii) non-dissociative physisorption. Our calculations reveal that Ti11, binary Ti10V, and Ti6VAl4 can adsorb at least 20 H2 molecules with the adsorption energies in the range of chemisorption and physisorption. The gravimetric density of H2 adsorbed on these clusters exceeds the ultimate 7.5 wt% limits, recommended for practical applications. However, the magnitude of adsorption energies for Ti6VAl4 are much smaller than those of pure Ti11 binary Ti10V clusters that favor its operating as hydrogen storage media around ambient temperature and pressure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. K. Mazloomi and C. Gomes (2012). Renew. Sustain. Energy Rev. 16, 3024.

    Article  CAS  Google Scholar 

  2. Y. Li and R. T. Yang (2016). J. Am. Chem. Soc. 28, 8136.

    Google Scholar 

  3. M. Kaur and K. Pal (2019). J. Energy Storage 23, 234.

    Article  Google Scholar 

  4. L. Schlapbach and A. Zuttel (2001). Nature 414, 353.

    Article  CAS  PubMed  Google Scholar 

  5. P. Chen and M. Zhu (2008). Mater. Today 11, 36.

    Article  Google Scholar 

  6. S. S. Kaye and J. R. Long (2005). J. Am. Chem. Soc. 127, 6506.

    Article  CAS  PubMed  Google Scholar 

  7. A. M. Seayad and D. M. Antonelli (2004). Adv. Mater. 16, 765.

    Article  CAS  Google Scholar 

  8. Y. Li and R. T. Yang (2006). J. Am. Chem. Soc. 128, 8136.

    Article  CAS  PubMed  Google Scholar 

  9. C. Tang, S. Chen, W. Zhu, J. Kang, X. He, and Z. Zhang (2015). Int. J. Hydrogen Energy 40, 16271.

    Article  CAS  Google Scholar 

  10. S. E. Kulkova, S. V. Eremeev, V. E. Egorushkin, J. S. Kim, and S. Y. Oh (2003). Solid State Commun. 126, 405.

    Article  CAS  Google Scholar 

  11. H. Zhu, Y. Liu, Y. Chen, and Z. Wen (2010). Appl. Phys. Lett. 96, 054101.

    Article  Google Scholar 

  12. P. Dibandjo, C. Zlotea, R. Gadiou, M. G. Camelia, C. Fermin, L. Michel, E. Leroy, and C. V. Guter (2013). Int. J. Hydrogen Energy 38, 952.

    Article  CAS  Google Scholar 

  13. Q. H. Weng, X. B. Wang, C. Y. Zhi, Y. S. Bando, and D. Golberg (2013). ACS Nano 7, 1558.

    Article  CAS  PubMed  Google Scholar 

  14. Office of energy efficiency & renewable energy, fuel cell technologies office, materials-based hydrogen storage (2018). https://www.energy.gov/eere/fuelcells/materials-based-hydrogen-storage.

  15. S. K. Bhatia and A. L. Myers (2006). Langmuir 22, 688.

    Article  Google Scholar 

  16. H. Wu, X. Fan, and J. L. Kuo (2012). Int. J. Hydrogen Energy 37, 14336.

    Article  CAS  Google Scholar 

  17. A. Mohajeri and A. Shahsavar (2018). Physica E 101, 167.

    Article  CAS  Google Scholar 

  18. C. Li, J. Li, F. Wu, S. S. Li, J. B. Xia, and L. W. Wang (2011). J. Phys. Chem. C 115, 23221.

    Article  CAS  Google Scholar 

  19. A. Omidvar and A. Mohajeri (2017). Int. J. Hydrogen Energy 42, 12327.

    Article  CAS  Google Scholar 

  20. M. Yoon, S. Y. Yang, C. Hicke, E. G. Wang, D. Geohegan, and Z. Y. Zhang (2018). Phys. Rev. Lett. 100, 206806.

    Article  Google Scholar 

  21. A. Züttel (2003). Mater. Today 6, 24.

    Article  Google Scholar 

  22. S. V. Alapati, J. K. Johnson, and D. S. Sholl (2006). J. Phys. Chem. B 110, 8769.

    Article  CAS  PubMed  Google Scholar 

  23. Y. Song (2013). Phys. Chem. Chem. Phys. 15, 14524.

    Article  CAS  PubMed  Google Scholar 

  24. C. D. Gelatt Jr., H. Ehrenreich, and J. A. Weiss (1987). Phys. Rev. B 17, 1940.

    Article  Google Scholar 

  25. T. Rapps, R. Ahlrichs, E. Waldt, M. M. Kappes, and D. Schooss (2013). Angew. Chem. Int. Ed. 52, 6102.

    Article  CAS  Google Scholar 

  26. J. Vanbuel, E. M. Fernández, P. Ferrari, S. Gewinner, W. Schöllkopf, L. C. Balbás, A. Fielicke, and E. Janssens (2017). Chem. Eur. J. 23, 15638.

    Article  CAS  PubMed  Google Scholar 

  27. R. Trivedi and D. Bandyopadhyay (2016). Int. J. Hydrogen Energy 41, 20113.

    Article  CAS  Google Scholar 

  28. S. H. Wei, Z. Zeng, J. Q. You, X. H. Yan, and X. G. Gong (2000). J. Chem. Phys. 113, 11127.

    Article  CAS  Google Scholar 

  29. A. Mohajeri (2018). J. Alloys Compds. 735, 1962.

    Article  CAS  Google Scholar 

  30. L. Guo and Y. Yang (2013). Int. J. Hydrogen Energy 38, 3640.

    Article  CAS  Google Scholar 

  31. P. McNelles and F. Y. Naumkin (2009). Phys. Chem. Chem. Phys. 11, 2858.

    Article  CAS  PubMed  Google Scholar 

  32. I. Yarovsky and A. Goldberg (2005). Mol. Simul. 31, 475.

    Article  CAS  Google Scholar 

  33. X. Liu, D. Tian, and C. Meng (2015). J. Mol. Struct. 1080, 105.

    Article  CAS  Google Scholar 

  34. R. W. P. Wagemans, J. H. van Lenthe, P. E. de Jongh, A. Jos van Dillen, and K. P. de Jong (2005). J. Am. Chem. Soc. 127, 16675.

    Article  CAS  PubMed  Google Scholar 

  35. X. Liu, D. Tian, and C. Meng (2013). Chem. Phys. 415, 179.

    Article  CAS  Google Scholar 

  36. E. Durgun, S. Ciraci, W. Zhou, and T. Yildirim (2006). Phys. Rev. Lett. 97.

    Article  CAS  PubMed  Google Scholar 

  37. B. Bogdanovic´, M. Felderhoff, S. Kaskel, A. Pommerin, K. Schlichte and F Schüth, (2003). Adv. Mater. 15, 1012.

    Article  Google Scholar 

  38. A. K. Kandalam, B. Kiran, and P. Jena (2008). J. Phys. Chem. C 112, 6181.

    Article  CAS  Google Scholar 

  39. E. Durgun, Y. R. Jang, and S. Ciraci (2007). Phys. Rev. B 76, 073413.

    Article  Google Scholar 

  40. T. Yildirim, J. Iniguez, and S. Ciraci (2005). Phys. Rev. B 72, 153403.

    Article  Google Scholar 

  41. R. R. Boyer (2010). JOM 62, 21.

    Article  CAS  Google Scholar 

  42. H. J. Rack and J. I. Qazi (2006). Mater. Sci. Eng. C 26, 1269.

    Article  CAS  Google Scholar 

  43. Q. M. Hu, S. J. Li, Y. L. Hao, R. Yang, B. Johansson, and L. Vitos (2008). Appl. Phys. Lett. 93, 121902.

    Article  Google Scholar 

  44. R. Boyer, G. Welsch and E. W. Collings, Materials Properties Handbook: Titanium Alloy, ASM International, Materials Park, OH (1994).

  45. S. W. Cho, C. S. Han, C. N. Park, and E. Akiba (1999). J. Alloys Comp. 288, 294.

    Article  CAS  Google Scholar 

  46. M. Bououdina, D. Fruchart, S. Jacquet, L. Pontonnier, and J. L. Soubeyroux (1999). Int. J. Hydrogen Energy 24, 885.

    Article  CAS  Google Scholar 

  47. A. Izanlou and M. K. Aydinol (2010). Int. J. Hydrogen Energy 35, 1681.

    Article  CAS  Google Scholar 

  48. Y. V. Milman, D. B. Miracle, S. I. Chugunova, I. V. Voskoboinik, N. P. Korzhova, T. N. Legkaya, and Y. N. Podrezov (2001). Intermetallics 9, 839.

    Article  CAS  Google Scholar 

  49. Y. Umakoshi, M. Yamaguchi, T. Sakagami, and T. Yamane (1989). J. Mater. Sci. 24, 1599.

    Article  CAS  Google Scholar 

  50. W. Chang and B. C. Muddle (2003). Metall. Mater. Trans. A 34, 491.

    Article  Google Scholar 

  51. Ö. Dursun, T. Tansel, E. Hatice, and Ç. İbrahim (2015). Mater. Res. Bull. 18, 813.

    Article  CAS  Google Scholar 

  52. Y. Umakoshi, M. Yamaguchi, T. Yamane, and T. Hirano (1998). Philos. Mag. 58, 651.

    Article  Google Scholar 

  53. M. Yamaguchi, Y. Umakoshi, and T. Yamane (1987). Philos. Mag. 55, 301.

    Article  CAS  Google Scholar 

  54. W. Chang and B. C. Muddle (1995). Mater. Sci. Eng. A 192, 233.

    Article  Google Scholar 

  55. A. Neville and B. A. B. McDougall (2001). Wear 250, 726.

    Article  Google Scholar 

  56. A. R. Zaganelli, G. E. Pessanha Henriques, I. Ferreira and J. M. D. Almeida Rollo (2008). J. Prosthetic Dent.84, 274.

  57. R. Ibarra, Y. Yamada and A. Goto (1983). Corrosion Fatigue: Mechanism, Metallurgy, Electrochemistry and Engineering, ed. T. W. Crocker, B. N. Leis. West Conshohocken, PA: ASTM International (1983) pp. 135–146.

  58. T. J. D. Kumar, P. Tarakeshwar, and N. Balakrishnan (2008). J. Chem. Phys. 128.

    Article  Google Scholar 

  59. T. J. D. Kumar, P. F. Weck, and N. Balakrishnan (2007). J. Phys. Chem. C 111, 7494.

    Article  CAS  Google Scholar 

  60. M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery Jr., J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, O. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski and D.J. Fox, Gaussian 09, revision D.01, Gaussian. Inc., Wallingford CT (2013).

  61. M. Ernzerhof and G. E. Scuseria (1999). J. Chem. Phys. 110, 5029.

    Article  CAS  Google Scholar 

  62. S. Grimme (2006). Semiempirical J. Chem. Phys. 27, 1787.

    CAS  Google Scholar 

  63. M. Castro, S. R. Liu, H. J. Zhai, and L. S. Wang (2003). J. Chem. Phys. 118, 2116.

    Article  CAS  Google Scholar 

  64. B. Delley (1990). J. Chem. Phys. 92, 508.

    Article  CAS  Google Scholar 

  65. B. Delley (1996). J. Phys. Chem. 100, 6107.

    Article  CAS  Google Scholar 

  66. B. Delley (2000). J. Chem. Phys. 113, 7756.

    Article  CAS  Google Scholar 

  67. Y. Inada, H. Orita, and K. Accelrys (2007). J. Comput. Chem. 29, 225.

    Article  Google Scholar 

  68. N. S. Venkataramanan, R. Sahara, H. Mizuseki, and Y. Kawazoe (2010). J. Phys. Chem. A 114, 5049.

    Article  CAS  PubMed  Google Scholar 

  69. J. Du, X. Sun, J. Chen, and G. Jiang (2010). J. Phys. B 43, 205103.

    Article  Google Scholar 

  70. P. L. Rodríguez-Kessler and A. R. Rodríguez-Domínguez (2016). J. Phys. Chem. A 120, 2401.

    Article  PubMed  Google Scholar 

  71. M. Doverstal, L. Karlsson, B. Lindgren, and U. Sassenberg (1997). Chem. Phys. Lett. 270, 273.

    Article  CAS  Google Scholar 

  72. M. Salazar-Villanueva, P. H. Hernández Tejeda, U. Pal, J. F. Rivas-Silva, J. I. Rodríguez Mora, and J. A. Ascencio (2006). J. Phys. Chem. A 110, 10274.

    Article  CAS  PubMed  Google Scholar 

  73. S. R. Liu, H. J. Zhai, M. Castro, and L. S. Wang (2013). J. Chem. Phys. 118, 2108.

    Article  Google Scholar 

  74. J. Medina, R. de Coss, A. Tapia, and G. Canto (2010). Eur. Phys. J. B 76, 427.

    Article  CAS  Google Scholar 

  75. P. Tarakeshwar, T. J. D. Kumar, and N. Balakrishnan (2008). J. Phys. Chem. A 112, 2846.

    Article  CAS  PubMed  Google Scholar 

  76. L. Wang and D. D. Johnson (2007). J. Am. Chem. Soc. 129, 3658.

    Article  CAS  PubMed  Google Scholar 

  77. G. J. Kubas (2005). Catalysis letters104, 79.

  78. R. Y. Sathe, S. Kumar, and T. J. D. Kumar (2018). Int. J. Hydrogen Energy 43, 5680.

    Article  CAS  Google Scholar 

  79. R. Y. Sathe, H. Bae, H. Lee, and T. J. D. Kumar (2020). Int. J. Hydrogen Energy 45, 9936.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge Shiraz University for financial support. We are also immensely grateful to Prof. Mehdi Neek-Amal (Shahid Rajaee Teacher Training University) for helpful comments and Shahid Rajaee Teacher Training University for providing the computing resources.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Afshan Mohajeri.

Ethics declarations

Conflict of interest

No potential conflict of interest was reported by the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3314 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nafissi, S., Hassani, N. & Mohajeri, A. Hydrogen Adsorption on Ti–V Binary and Ti–V–Al Ternary Alloys of Ti11 Cluster. J Clust Sci 34, 1337–1346 (2023). https://doi.org/10.1007/s10876-022-02311-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-022-02311-9

Keywords

Navigation