Skip to main content
Log in

Design of Novel Molecular Switches Using the C20 Fullerene: A DFT Study

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

In this study, fullerene C20 molecule was used and two types of molecular switch structures were designed. Then, using DFT calculations, the effect of electric fields, with powers of 0 to 100 × 10–4 a.u., on their structural and electrical properties was investigated. It was observed that with increasing electric field, the structure of switches 1 and 2 changes and the intensity of changes in dihedral angle is more than other structural parameters. Sudden changes in dihedral angle occur in the electric field, which can indicate that the switch is on. It was shown that as the electric field strength increases, the HLG decreases, which decreases sharply in a given field and then becomes constant. This fast decrease in HLG, which is in correspondence with changing in the dihedral angle, demonstrates the on state of the molecular switch. NBO Charges analysis on the Au, S, N, and O atoms shows that the electric field pushes the electrons toward more positive electric fields. Finally, the evidence shows that switch 1 in the electric field about 0.006 to 0.008 a.u. is switched from off to on, and switch 2 in the electric field is switched from 0.003 to 0.005 a.u.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. E. G. Emberly and G. Kirczenow (2003). Phys. Rev. Lett. 91, 188301.

    Article  PubMed  Google Scholar 

  2. K. A. Green, M. P. Cifuentes, T. C. Corkery, M. Samoc, and M. G. Humphrey (2009). Angew. Chem. Int. Ed. 48, 7867.

    Article  CAS  Google Scholar 

  3. J. E. Green, J. W. Choi, A. Boukai, Y. Bunimovich, et al. (2007). Nature 445, 0028.

    Article  Google Scholar 

  4. K. Harismah, A. M. Dhumad, H. S. Ibraheem, H. Zandi, and H. J. Majeed (2021). J. Mol. Liquids 334, 116018.

    Article  CAS  Google Scholar 

  5. Y. Bazvand, M. Noei, F. Khazali, and Z. Saadati (2020). J. Mol. Struct. 1200, 127008.

    Article  CAS  Google Scholar 

  6. E. Zahedi, M. Mozaffari, F. S. Karimi, and A. Nouri (2014). Can. J. Chem. 92, 317.

    Article  CAS  Google Scholar 

  7. B. L. Feringa and W. R. Browne, Molecular Switches (Wiely, Hoboken, 2011).

    Book  Google Scholar 

  8. C. J. Xia, D. S. Liu, and H. C. Liu (2012). Optik 123, 1307.

    Article  CAS  Google Scholar 

  9. G. C. Zhao and C. G. Zhao (2020). Comput. Theor. Chem. 1186, 112915.

    Article  CAS  Google Scholar 

  10. I. D. L. Albert, T. J. Marks, and M. A. Ratner (1997). J. Am. Chem. Soc. 119, 6575.

    Article  CAS  Google Scholar 

  11. C. J. Xia, D. S. Liu, C. F. Fang, and P. Zhao (2010). Physica E 42, 1763.

    Article  CAS  Google Scholar 

  12. M. Noei (2016). J. Mol. Liquids 224, 757.

    Article  CAS  Google Scholar 

  13. M. Noei (2016). Vaccum 131, 194.

    Article  CAS  Google Scholar 

  14. I. D. L. Albert, T. J. Marks, and M. A. Ratner (1997). J. Am. Chem. Soc. 119, 3155.

    Article  CAS  Google Scholar 

  15. J. Jung, W. Liu, S. Kim, and D. Lee (2019). J. Org. Chem. 84, 6258.

    Article  CAS  PubMed  Google Scholar 

  16. S. Bhandary, J. M. Tomczak, and A. Valli (2021). R. Soc. Chem. 3, 4990.

    CAS  Google Scholar 

  17. M. D. Valle, R. Gutiérrez, C. Tejedor, and G. Cuniberti (2007). Nat. Nanotech. 2, 176.

    Article  Google Scholar 

  18. M. E. Z. Michoff, M. E. Castillo, and E. P. M. Leiva (2015). J. Phys. Chem. C 119, 23978.

    Article  Google Scholar 

  19. H. Sabzyan and D. Farmanzadeh (2007). J. Comput. Chem. 28, 922.

    Article  CAS  PubMed  Google Scholar 

  20. A. R. Pease, J. O. Jeppesen, J. F. Stoddart, Y. Luo, et al. (2001). Acc. Chem. Res. 2001 (34), 433.

    Article  Google Scholar 

  21. R. Safari, H. Hadi, and H. R. Shamlouei (2022). Struct Chem. https://doi.org/10.1007/s11224-022-01917-z.

    Article  Google Scholar 

  22. J. M. Spruell, W. F. Paxton, J. C. Olsen, D. Benı́tez, et al. (2009). J. Am. Chem. Soc. 131, 11571.

    Article  CAS  PubMed  Google Scholar 

  23. R. J. Maurer and K. Reuter (2011). J. Chem. Phys. 135, 224303.

    Article  PubMed  Google Scholar 

  24. M. Kondo, T. Tada, and K. Yoshizawa (2005). Chem. Phys. Lett. 412, 55.

    Article  CAS  Google Scholar 

  25. Y. H. Jang and W. A. Goddard (2006). J. Phys. Chem. B 110, 7660.

    Article  CAS  PubMed  Google Scholar 

  26. B. L. Feringa, R. A. van Delden, N. Koumura, and E. M. Geertsema (2000). Chem. Rev. 100, 1789.

    Article  CAS  PubMed  Google Scholar 

  27. D. Paul, J. Deb, B. Bhattacharya, and U. Sarkar (2016). AIP Conf. Proc. 1832, 050107.

    Article  Google Scholar 

  28. F. Mohn, J. Repp, L. Gross, G. Meyer, M. S. Dyer, and M. Persson (2010). Am. Phys. Sci. 105 (26), 266102.

    Google Scholar 

  29. S. Viswanathan, Y. Z. Voloshin, H. Radecka, and J. Radecki (2009). Electrochim. Acta 54, 5431.

    Article  CAS  Google Scholar 

  30. Frisch M, Trucks G, Schlegel H.B, Scuseria G, Robb M, Cheeseman J, Scalmani G, Barone V, Mennucci B, Petersson G, Gaussian, Inc., Wallingford, CT (2009)

  31. T. J. Rives and W. L. Jorgensen (2007). J. Chem. Theory Comput. 4, 297.

    Article  Google Scholar 

  32. N. M. O’boyle, A. L. Tenderholt, and K. M. Langner (2008). J. Comput. Chem. 29, 839.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamid Reza Shamlouei.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yarahmadi, M., Shamlouei, H.R. Design of Novel Molecular Switches Using the C20 Fullerene: A DFT Study. J Clust Sci 34, 1325–1336 (2023). https://doi.org/10.1007/s10876-022-02310-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-022-02310-w

Keywords

Navigation