Skip to main content
Log in

Anisotropic Charge Transfer Mobility Properties of Systems with Large Conjugation Core and Peripheral Phenyl Rings

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

The role of crystal structures and electronic properties has been widely investigated for carrier transport in organic semiconductors. The first-principles method was applied to analyse the effect of effective electronic couplings and reorganization energy on the carrier mobility for the combination of large conjugation core and peripheral phenyl rings. It is found that for compound 1 and compound 2, the reorganization energies of hole transfer (λh) are all smaller than those of electron transfer (λe), furthermore, the reorganization energy of hole transfer for compound 1 is much lower than compound 2. The monomer of compound 1 has the lower ionization potential which will contribute to the reception of holes. The change of molecular stacking modes will also influence the charge transport performance, which can be drawn from the theoretical calculation of the mobility of single crystal structure. The electronic couplings of compound 1 are basically greater than that of compound 2. For compound 1 crystal, the relatively superior intermolecular electronic coupling and weak reorganization energy of hole transport would make it play a part as an organic semiconductor materials of p-type. The theoretical prediction should be a promising strategy to provide clearer design guidelines for further promotion in carrier mobility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Z. Xu, B. Z. Tang, Y. Wang, and D. Ma (2020). J. Mater. Chem. C 8, 2614.

    Article  CAS  Google Scholar 

  2. A. Irfan and A. Mahmood (2018). J. Clust. Sci. 29, 359.

    Article  CAS  Google Scholar 

  3. S. Zhao and L. Xiao (2021). Phys. Chem. Chem. Phys. 24, 403.

    Article  PubMed  Google Scholar 

  4. S. B. Li, Y. Geng, and Z. M. Su (2020). Org. Electron. 87, 105956.

    Article  CAS  Google Scholar 

  5. E. Peterson, P. N. Sisco, C. J. Murphy, R. D. Adams, and D. Carroll (2011). J. Clust. Sci. 22, 59.

    Article  CAS  Google Scholar 

  6. Q. Y. Dai, S. N. Xu, Y. Q. Peng, W. L. Lv, L. Sun, and Y. Wei (2020). Chem. Phys. Lett. 742, 137133.

    Article  CAS  Google Scholar 

  7. H. S. Stein, D. Guevarra, P. F. Newhouse, E. Soedarmadji, and J. M. Gregoire (2019). Chem. Sci. 10, 47.

    Article  CAS  PubMed  Google Scholar 

  8. Y. P. Wang, Q. Duan, Q. C. Liang, G. Z. Yan, D. Z. Yang, and D. G. Ma (2019). Org. Electron. 66, 58.

    Article  CAS  Google Scholar 

  9. T. Nomoto, S. Imajo, S. Yamashita, H. Akutsu, Y. Nakazawa, and A. I. Krivchikov (2019). J. Therm. Anal. Calorim. 135, 2831.

    Article  CAS  Google Scholar 

  10. D. Kiefer, R. Kroon, A. I. Hofmann, H. Sun, X. Liu, A. Giovannitti, D. Stegerer, A. Cano, J. Hynynen, L. Yu, Y. Zhang, D. Nai, T. F. Harrelson, M. Sommer, A. J. Moulé, M. Kemerink, S. R. Marder, I. McCulloch, M. Fahlman, S. Fabiano, and C. Müller (2019). Nat. Mater. 18, 149.

    Article  CAS  PubMed  Google Scholar 

  11. M. L. Tietze, J. Benduhn, P. Pahner, B. Nell, M. Schwarze, H. Kleemann, M. Krammer, K. Zojer, K. Vandewal, and K. Leo (2018). Nat. Commun. 9, 1182.

    Article  PubMed  PubMed Central  Google Scholar 

  12. C. Z. Li, J. Yang, F. H. Su, J. J. Tan, Y. Luo, and S. J. Ye (2020). Nat. Commun. 11, 5481.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. L. Lyu, K. Kirihara, Y. Okigawa, M. Hasegawa, W. Ding, M. Mukaida, Y. Zhou, and Q. Wei (2020). Org. Electron. 78, 105615.

    Article  CAS  Google Scholar 

  14. M. X. Zhang and G. J. Zhao (2012). J. Phys. Chem. C 116, 19197.

    Article  CAS  Google Scholar 

  15. D. Zheng, M. Zhang, and G. Zhao (2017). Phys. Chem. Chem. Phys. 19, 28175.

    Article  CAS  PubMed  Google Scholar 

  16. A. Wadsworth, H. Chen, K. J. Thorley, C. Cendra, M. Nikolka, H. Bristow, M. Moser, A. Salleo, T. D. Anthopoulos, H. Sirringhaus, and I. McCulloch (2019). J. Am. Chem. Soc. 142, 652.

    Article  Google Scholar 

  17. M. X. Zhang, S. Chai, and G. J. Zhao (2012). Org. Electron. 13, 215.

    Article  CAS  Google Scholar 

  18. X. Zhang, T. Li, X. Guan, C. Zhang, R. Li, J. Xue, J. Liu, Y. Wang, and C. Fan (2022). Phys. Chem. Chem. Phys. 24, 2032.

    Article  CAS  PubMed  Google Scholar 

  19. S. Fratini, M. Nikolka, A. Salleo, G. Schweicher, and H. Sirringhaus (2020). Nat. Mater. 19, 491.

    Article  CAS  PubMed  Google Scholar 

  20. S. Krishnan and K. Senthilkumar (2021). Phys. Chem. Chem. Phys. 23, 27468.

    Article  CAS  PubMed  Google Scholar 

  21. Y. Zhang, Y. Duan, J. Liu, D. Zheng, M. Zhang, and G. Zhao (2017). J. Phys. Chem. C 121, 17633.

    Article  CAS  Google Scholar 

  22. V. C. Sundar, J. Zaumseil, V. Podzorov, E. Menard, R. L. Willrtt, T. Someya, M. E. Gershenson, and J. A. Rogers (2004). Science 303, 1644.

    Article  CAS  PubMed  Google Scholar 

  23. T. Chu and Y. Liu (2018). Org. Electron. 53, 165.

    Article  CAS  Google Scholar 

  24. D. Zheng, Y. Guo, M. Zhang, X. Feng, L. Zhu, L. Qiu, X. Jin, and G. Zhao (2020). J. Comput. Chem. 41, 976.

    Article  CAS  PubMed  Google Scholar 

  25. D. Liu, R. Sa, J. Wang, and K. Wu (2020). J. Clust. Sci. 31, 1103.

    Article  CAS  Google Scholar 

  26. R. A. Marcus (1957). J. Chem. Phys. 26, 867.

    Article  CAS  Google Scholar 

  27. Y. Zhang, Y. Duan, L. Song, D. Zheng, M. Zhang, and G. Zhao (2017). J. Chem. Phys. 147, 114905.

    Article  PubMed  Google Scholar 

  28. T. P. Nguyen, P. Roy, and J. H. Shim (2018). Phys. Chem. Chem. Phys. 20, 8658.

    Article  CAS  PubMed  Google Scholar 

  29. Y. Zhang, P. M. Lahti, and D. Maroudas (2017). Org. Electron. 50, 130.

    Article  CAS  Google Scholar 

  30. I. Hisaki, K. Osaka, and N. Ikenaka (2016). Cryst. Growth Des. 16, 714.

    Article  CAS  Google Scholar 

  31. L. Zang, Y. Che, and J. S. Moore (2008). Accounts Chem. Res. 41, 1596.

    Article  CAS  Google Scholar 

  32. V. Podzorov, E. Menard, A. Borissov, V. Kiryukhin, J. A. Rogers, and M. E. Gershenson (2004). Phys. Rev. Lett. 93, 086602.

    Article  CAS  PubMed  Google Scholar 

  33. M. Reig, J. Puigdollers, and D. Velasco (2015). J. Mater. Chem. C 3, 506.

    Article  CAS  Google Scholar 

  34. M. Mamada, H. Katagiri, T. Sakanoue, and S. Tokito (2015). Cryst. Growth Des. 15, 442.

    Article  CAS  Google Scholar 

  35. M. Little, H. Lan, J. Raftery, J. J. Morrison, J. J. W. McDouall, S. G. Yeates, and P. Quayle (2013). Eur. J. Org. Chem. 27, 6038.

    Article  Google Scholar 

  36. C. F. You, D. H. Liu, J. T. Yu, H. Tan, M. B. Zhu, B. Zhang, Y. Liu, Y. F. Wang, and W. G. Zhu (2020). Adv. Optical Mater. 8, 2000154.

    Article  CAS  Google Scholar 

  37. C. Y. K. Chan, Z. J. Zhao, J. W. Y. Lam, J. Z. Liu, S. M. Chen, P. Lu, F. Mahtab, X. J. Chen, H. H. Y. Sung, H. S. Kwok, Y. Ma, I. D. Williams, K. S. Wong, and B. Z. Tang (2012). Adv. Funct. Mater. 22, 378.

    Article  CAS  Google Scholar 

  38. Y. Duan, H. Ma, H. Tian, J. Liu, X. Deng, Q. Peng, and Y. Q. Dong (2019). Chem. Asian J. 14, 864.

    Article  CAS  PubMed  Google Scholar 

  39. M. M. Oliva, J. Casado, J. T. L. Navarrete, R. Berridge, P. J. Skabara, A. L. Kanibolotsky, and I. F. Perepichka (2007). J. Phys. Chem. B 111, 4026.

    Article  PubMed  Google Scholar 

  40. Z. Zhao, T. Chen, S. Jiang, Z. Liu, D. Fang, and Y. Q. Dong (2016). J. Mater. Chem. C 4, 4800.

    Article  CAS  Google Scholar 

  41. W. Q. Deng and W. A. Goddard (2004). J. Phys. Chem. B 108, 8614.

    Article  CAS  Google Scholar 

  42. S. H. Wen, A. Li, J. Song, W. Q. Deng, K. L. Han, and W. A. Goddard (2009). J. Phys. Chem. B 113, 8813.

    Article  CAS  PubMed  Google Scholar 

  43. G. J. Zhao and K. L. Han (2012). Accounts Chem. Res. 45, 404.

    Article  CAS  Google Scholar 

  44. E. F. Valeev, V. Coropceanu, D. A. da Silva Filho, S. Salman, and J. Brédas (2006). J. Am. Chem. Soc. 128, 9882.

    Article  CAS  PubMed  Google Scholar 

  45. G. te Velde, F. M. Bickelhaupt, E. J. Baerends, C. Fonseca Guerra, S. J. A. van Gisbergen, J. G. Snijders, and T. Ziegler (2001). J. Comput. Chem. 22, 931.

    Article  Google Scholar 

  46. K. Senthilkumar, F. C. Grozema, F. M. Bickelhaupt, and L. D. A. Siebbeles (2003). J. Chem. Phys. 119, 9809.

    Article  CAS  Google Scholar 

  47. T. Yamada, T. Sato, K. Tanak, and H. Kaji (2010). Org. Electron. 11, 255.

    Article  CAS  Google Scholar 

  48. J. J. Kwiatkowski, J. Nelson, H. Li, J. L. Bredas, W. Wenzel, and C. Lennartz (2008). Phys. Chem. Chem. Phys. 10, 1852.

    Article  CAS  PubMed  Google Scholar 

  49. G. R. Hutchison, M. A. Ratner, and T. J. Marks (2005). J. Am. Chem. Soc. 127, 2339.

    Article  CAS  PubMed  Google Scholar 

  50. J. Cornil, J. P. Calbert, and J. L. Brédas (2001). J. Am. Chem. Soc. 123, 1250.

    Article  CAS  PubMed  Google Scholar 

  51. P. Li,  Y. R. Guo, Y. Jia, H. W. Guan, C. Wang, Z. B. Wu, S. Q. Sun, Z. J. Qu, P. W. Zhou, and  G. J. Zhao (2021). Mater. Chem. Front. 5, 7170.

    Article  CAS  Google Scholar 

  52. Y. R. Guo, H. W. Guan, P. Li, C. Wang, Z. B. Wu, Y. N. Wang, Z. Y. Yu, Z. Zhang, S. P. Wang, and G. J. Zhao (2021). J. Phys. Chem. Lett. 12, 9501.

    Article  CAS  PubMed  Google Scholar 

  53. A. Chandekar and J. E. Whitten (2005). Synthetic Met. 150, 259.

    Article  CAS  Google Scholar 

  54. M. Y. Kuo, H. Y. Chen, and I. Chao (2007). Chem-Eur. J. 13, 4750.

    Article  CAS  PubMed  Google Scholar 

  55. S. Mohakud, A. P. Alex, and S. K. Pati (2010). J. Phys. Chem. C 114, 20436.

    Article  CAS  Google Scholar 

  56. X. Y. Zhang, and G. J. Zhao (2012). J. Phys. Chem. C 116, 13858.

    Article  CAS  Google Scholar 

  57. Y. Umemoto, Y. Ie, A. Saeki, S. Seki, S. Tagawa, and Y. Aso (2008). Org. Lett. 10, 1095.

    Article  CAS  PubMed  Google Scholar 

  58. J. L. Brédas, J. P. Calbert, D. A. da Silva Filho, and J. Cornil (2002). P. Natl. Acad. Sci. 99, 5804.

    Article  Google Scholar 

  59. R. A. Marcus (1993). Theory and experiment. Rev. Mod. Phys. 65, 599.

    Article  CAS  Google Scholar 

  60. J. L. Brédas, D. Beljonne, V. Coropceanu, and J. Cornil (2004). Chem. Rev. 104, 4971.

    Article  PubMed  Google Scholar 

  61. R. A. Marcus (1956). J. Chem. Phys. 24, 966.

    Article  CAS  Google Scholar 

  62. H. Lee, Y. Yi, S. W. Cho, and W. K. Choi (2014). Synthetic met. 194, 118.

    Article  CAS  Google Scholar 

  63. C. Yao, C. Peng, Y. Yang, L. Li, M. Bo, and J. Wang (2018). J. Mater. Chem. C 6, 4912.

    Article  CAS  Google Scholar 

  64. Y. A. Duan, H. B. Li, Y. Geng, Y. Wu, G. Y. Wang, and Z. M. Su (2014). Org. Electron. 15, 602.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant no. 21901218), Henan Province Science Foundation for Youths (Grant no. 212300410237)

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qi Yang or Yange Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Jiang, D., Zhang, H. et al. Anisotropic Charge Transfer Mobility Properties of Systems with Large Conjugation Core and Peripheral Phenyl Rings. J Clust Sci 34, 1291–1298 (2023). https://doi.org/10.1007/s10876-022-02307-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-022-02307-5

Keywords

Navigation