Skip to main content

Advertisement

Log in

Gold Nanoparticles: Synthesis Methods, Functionalization and Biological Applications

  • Review Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

Nanotechnology has vast applications in medicine and biomedical engineering like tissue engineering, diagnosis, and therapy. Nowadays incorporation of functionalized nanostructures in various biomedical applications has generated considerable research interest. Gold nanoparticles (AuNPs) are one of the most stable metal nanoparticles with unique physicochemical properties and are reflected as a promising candidate for widespread biological applications. Among different synthesis methods, biological synthesis methods are advantageous as it reduces the need for toxic chemicals for reduction purpose. Surface functionalization provides colloidal stability to gold nanoparticles which are achieved by using various materials. This review mainly focuses on the biological applications of AuNPs such as bioimaging, biosensing, anticancer therapy, drug delivery, hyperthermia, and antimicrobial activity. The surface plasmon resonance (SPR) related optical properties are used for biosensing and bioimaging applications for diagnosis to detect pathogens as well as biomarkers. Biomolecules and drug functionalized AuNPs are effectively used to treat various cancer and other diseases. Thus, the study of gold nanoparticles opens a new percept in the biological field for varieties of applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Reproduced with permission from references [43,44,45,46,47,48]

Fig. 5

Reproduced with permission from references [57,58,59,60,61]

Fig. 6

Reproduced with permission from reference [61]

Fig. 7

Reproduced with permission from reference [105]

Fig. 8

Reproduced with permission from reference [110]

Similar content being viewed by others

References:

  1. M. G. De Morais, V. G. Martins, D. Steffens, P. Pranke, and J. A. V. Da Costa (2014). Biological applications of nanobiotechnology. J Nanosci Nanotechnol. https://doi.org/10.1166/jnn.2014.8748.

    Article  PubMed  Google Scholar 

  2. N. Elahi, M. Kamali, and M. H. Baghersad (2018). Recent biomedical applications of gold nanoparticles: a review. Talanta. https://doi.org/10.1016/j.talanta.2018.02.088.

    Article  PubMed  Google Scholar 

  3. Y. C. Yeh, B. Creran, and V. M. Rotello (2012). Gold nanoparticles: preparation, properties, and applications in bionanotechnology. Nanoscale. https://doi.org/10.1039/c1nr11188d.

    Article  PubMed  Google Scholar 

  4. M. Shah, V. D. Badwaik, and R. Dakshinamurthy (2014). Biological applications of gold nanoparticles. J Nanosci Nanotechnol. https://doi.org/10.1166/jnn.2014.8900.

    Article  PubMed  Google Scholar 

  5. A. M. K. Albayati, R. A. Munef, and R. M. S. Alhaddad (2020). Shape and size effect of surface plasmons on gold nanoparticles. Syst Rev Pharm. https://doi.org/10.31838/srp.2020.11.73.

    Article  Google Scholar 

  6. B. Mehravani, A. I. Ribeiro, and A. Zille (2021). Gold nanoparticles synthesis and antimicrobial effect on fibrous materials. Nanomaterials. https://doi.org/10.3390/nano11051067.

    Article  PubMed  PubMed Central  Google Scholar 

  7. M. Shah, V. Badwaik, Y. Kherde, H. K. Waghwani, T. Modi, Z. P. Aguilar, H. Rodgers, W. Hamilton, T. Marutharaj, C. Webb, and M. B. Lawrenz (2014). Gold nanoparticles: Various methods of synthesis and antibacterial applications. Front Biosci Landmark. https://doi.org/10.2741/4284.

    Article  Google Scholar 

  8. I. Hammami and N. M. Alabdallah (2021). Gold nanoparticles: synthesis properties and applications. J. King Saud Univ. Sci. 33 (7), 101560. https://doi.org/10.1016/j.jksus.2021.101560.

    Article  Google Scholar 

  9. S. Ahmed, Annu, S. Ikram, and S. Yudha (2016). Biosynthesis of gold nanoparticles: a green approach. J Photochem Photobiol B Biol. https://doi.org/10.1016/j.jphotobiol.2016.04.034.

    Article  Google Scholar 

  10. M. Kitching, M. Ramani, and E. Marsili (2015). Fungal biosynthesis of gold nanoparticles: mechanism and scale up. Microb. Biotechnol. 8 (6), 904–917. https://doi.org/10.1111/1751-7915.12151.

    Article  CAS  PubMed  Google Scholar 

  11. R. Herizchi, E. Abbasi, M. Milani, and A. Akbarzadeh (2016). Current methods for synthesis of gold nanoparticles. Artif Cells Nanomed Biotechnol. https://doi.org/10.3109/21691401.2014.971807.

    Article  PubMed  Google Scholar 

  12. J. Dong, P. L. Carpinone, G. Pyrgiotakis, P. Demokritou, and B. M. Moudgil (2020). Synthesis of precision gold nanoparticles using Turkevich method. KONA Powder Part J. https://doi.org/10.14356/kona.2020011.

    Article  Google Scholar 

  13. K. X. Lee, et al. (2020). Recent developments in the facile bio-synthesis of gold nanoparticles (AuNPs) and their biomedical applications. Int J Nanomed. https://doi.org/10.2147/IJN.S233789.

    Article  Google Scholar 

  14. T. S. Santra, F.-G. (Kevin) Tseng, T. K. Barik, Biosynthesis of silver and gold nanoparticles for potential biomedical applications—a brief review. J. Nanopharm. Drug Deliv. (2015). https://doi.org/10.1166/jnd.2014.1065

  15. U. Shedbalkar, R. Singh, S. Wadhwani, S. Gaidhani, and B. A. Chopade (2014). Microbial synthesis of gold nanoparticles: current status and future prospects. Adv Colloid Interface Sci. https://doi.org/10.1016/j.cis.2013.12.011.

    Article  PubMed  Google Scholar 

  16. M. Nadeem, B. H. Abbasi, M. Younas, W. Ahmad, and T. Khan (2017). A review of the green syntheses and anti-microbial applications of gold nanoparticles. Green Chem Lett Rev. https://doi.org/10.1080/17518253.2017.1349192.

    Article  Google Scholar 

  17. A. Satyanarayana-Reddy, et al. (2010). Biological synthesis of gold and silver nanoparticles mediated by the bacteria Bacillus subtilis. J Nanosci Nanotechnol. https://doi.org/10.1166/jnn.2010.2519.

    Article  Google Scholar 

  18. K. Deplanche and L. E. Macaskie (2008). Biorecovery of gold by Escherichia coli and Desulfovibrio desulfuricans. Biotechnol Bioeng. https://doi.org/10.1002/bit.21688.

    Article  PubMed  Google Scholar 

  19. P. K. Singh and S. Kundu (2014). Biosynthesis of gold nanoparticles using bacteria. Proc Natl Acad Sci India Sect B Biol Sci. https://doi.org/10.1007/s40011-013-0230-6.

    Article  Google Scholar 

  20. N. Naimi-Shamel, P. Pourali, and S. Dolatabadi (2019). Green synthesis of gold nanoparticles using Fusarium oxysporum and antibacterial activity of its tetracycline conjugant. J Mycol Med. https://doi.org/10.1016/j.mycmed.2019.01.005.

    Article  PubMed  Google Scholar 

  21. S. Mazdeh, H. Motamedi, A. Khiavi, and M. Mehrabi (2014). Gold nanoparticle biosynthesis by E. coli and conjugation with streptomycin and evaluation of its antibacterial effect. Curr Nanosci. https://doi.org/10.2174/1573413709666131203231344.

    Article  Google Scholar 

  22. R. Qiu, et al. (2021). A biosynthesized gold nanoparticle from Staphylococcus aureus—as a functional factor in muscle tissue engineering. Appl Mater Today. https://doi.org/10.1016/j.apmt.2020.100905.

    Article  Google Scholar 

  23. R. Shunmugam, S. Renukadevi Balusamy, V. Kumar, S. Menon, T. Lakshmi, and H. Perumalsamy (2021). Biosynthesis of gold nanoparticles using marine microbe (Vibrio alginolyticus) and its anticancer and antioxidant analysis. J King Saud Univ Sci. https://doi.org/10.1016/j.jksus.2020.101260.

    Article  Google Scholar 

  24. A. E. El-Shanshoury, E. Z. Ebeid, S. E. Elsilk, S. F. Mohamed, and M. E. Ebeid (2020). Biogenic synthesis of gold nanoparticles by bacteria and utilization of the chemical fabricated for diagnostic performance of viral hepatitis C Virus-NS4. Lett Appl NanoBioSci. https://doi.org/10.33263/lianbs93.13951408.

    Article  Google Scholar 

  25. H. Motamedi, S. K. Mazdeh, A. A. Khiavi, and M. R. Mehrabi (2015). Optimization of gold nanoparticle biosynthesis by Escherichia coli DH5a and its conjugation with gentamicin. J Nano Res. https://doi.org/10.4028/www.scientific.net/JNanoR.32.93.

    Article  Google Scholar 

  26. P. Clarance, et al. (2020). Green synthesis and characterization of gold nanoparticles using endophytic fungi Fusarium solani and its in-vitro anticancer and biomedical applications. Saudi J Biol Sci. https://doi.org/10.1016/j.sjbs.2019.12.026.

    Article  PubMed  Google Scholar 

  27. M. M. Abdel-Kareem and A. A. Zohri (2018). Extracellular mycosynthesis of gold nanoparticles using Trichoderma hamatum: optimization, characterization and antimicrobial activity. Lett Appl Microbiol. https://doi.org/10.1111/lam.13055.

    Article  PubMed  Google Scholar 

  28. A. I. Usman, A. A. Aziz, and O. A. Noqta (2019). Application of green synthesis of gold nanoparticles: a review. J Teknol. https://doi.org/10.11113/jt.v81.11409.

    Article  Google Scholar 

  29. T. Ahmad, M. A. Bustam, M. Irfan, M. Moniruzzaman, H. M. A. Asghar, and S. Bhattacharjee (2019). Mechanistic investigation of phytochemicals involved in green synthesis of gold nanoparticles using aqueous Elaeis guineensis leaves extract: Role of phenolic compounds and flavonoids. Biotechnol Appl Biochem. https://doi.org/10.1002/bab.1787.

    Article  PubMed  Google Scholar 

  30. S. Balasubramanian, S. M. J. Kala, and T. L. Pushparaj (2020). Biogenic synthesis of gold nanoparticles using Jasminum auriculatum leaf extract and their catalytic, antimicrobial and anticancer activities. J Drug Deliv Sci Technol. https://doi.org/10.1016/j.jddst.2020.101620.

    Article  Google Scholar 

  31. N. Thangamani and N. Bhuvaneshwari (2019). Green synthesis of gold nanoparticles using Simarouba glauca leaf extract and their biological activity of micro-organism. Chem Phys Lett. https://doi.org/10.1016/j.cplett.2019.07.015.

    Article  Google Scholar 

  32. N. S. Al-Radadi (2021). Facile one-step green synthesis of gold nanoparticles (AuNp) using licorice root extract: antimicrobial and anticancer study against HepG2 cell line. Arab J Chem. https://doi.org/10.1016/j.arabjc.2020.102956.

    Article  Google Scholar 

  33. K. Perveen, et al. (2021). Microwave-assisted rapid green synthesis of gold nanoparticles using seed extract of Trachyspermum ammi: Ros mediated biofilm inhibition and anticancer activity. Biomolecules. https://doi.org/10.3390/biom11020197.

    Article  PubMed  PubMed Central  Google Scholar 

  34. J. Chen, et al. (2021). Green synthesis, characterization, cytotoxicity, antioxidant, and anti-human ovarian cancer activities of Curcumae kwangsiensis leaf aqueous extract green-synthesized gold nanoparticles. Arab J Chem. https://doi.org/10.1016/j.arabjc.2021.103000.

    Article  Google Scholar 

  35. N. Ul Islam, F. Ahsan, I. Khan, M. R. Shah, M. Shahid, and M. A. Khan (2015). Green synthesis and biological activities of gold nanoparticles functionalized with Citrus reticulata, Citrus aurantium, Citrus sinensis and Citrus grandis. J. Chem. Soc. Pakistan 37 (4), 721.

    CAS  Google Scholar 

  36. U. Ullah, et al. (2021). Green synthesis, in vivo and in vitro pharmacological studies of Tamarindus indica based gold nanoparticles. Bioprocess Biosyst Eng. https://doi.org/10.1007/s00449-020-02500-8.

    Article  PubMed  Google Scholar 

  37. A. Rauf, et al. (2021). Green synthesis and biomedicinal applications of silver and gold nanoparticles functionalized with methanolic extract of Mentha longifolia. Artif Cells Nanomed Biotechnol. https://doi.org/10.1080/21691401.2021.1890099.

    Article  PubMed  Google Scholar 

  38. A. Guliani, A. Kumari, and A. Acharya (2021). Green synthesis of gold nanoparticles using aqueous leaf extract of Populus alba: characterization, antibacterial and dye degradation activity. Int J Environ Sci Technol. https://doi.org/10.1007/s13762-020-03065-5.

    Article  Google Scholar 

  39. M. A. Mahdi, M. T. Mohammed, A. N. Jassim, and Y. M. Taay (2021). Green synthesis of gold NPs by using dragon fruit: toxicity and wound healing. J Phys Conf Ser. https://doi.org/10.1088/1742-6596/1853/1/012039.

    Article  Google Scholar 

  40. B. R. Gangapuram, R. Bandi, M. Alle, R. Dadigala, G. M. Kotu, and V. Guttena (2018). Microwave assisted rapid green synthesis of gold nanoparticles using Annona squamosa L peel extract for the efficient catalytic reduction of organic pollutants. J Mol Struct. https://doi.org/10.1016/j.molstruc.2018.05.004.

    Article  Google Scholar 

  41. M. P. Desai, G. M. Sangaokar, and K. D. Pawar (2018). Kokum fruit mediated biogenic gold nanoparticles with photoluminescent, photocatalytic and antioxidant activities. Process Biochem. https://doi.org/10.1016/j.procbio.2018.03.027.

    Article  Google Scholar 

  42. O. M. El-Borady, M. S. Ayat, M. A. Shabrawy, and P. Millet (2020). Green synthesis of gold nanoparticles using Parsley leaves extract and their applications as an alternative catalytic, antioxidant, anticancer, and antibacterial agents. Adv Powder Technol. https://doi.org/10.1016/j.apt.2020.09.017.

    Article  Google Scholar 

  43. Cytodiagnostics, Introduction to Gold Nanoparticle Characterization, vol. 1 (Cytodiagnostics, Burlington, 2017).

    Google Scholar 

  44. S. Krishnamurthy, A. Esterle, N. C. Sharma, and S. V. Sahi (2014). Yucca-derived synthesis of gold nanomaterial and their catalytic potential. Nanoscale Res Lett. https://doi.org/10.1186/1556-276X-9-627.

    Article  PubMed  PubMed Central  Google Scholar 

  45. D. J. Smith (2015). CHAPTER 1: characterization of nanomaterials using transmission electron microscopy. RSC Nanosci. Nanotechnol. 37, 1–29.

    CAS  Google Scholar 

  46. R. N. Vora, A. N. Joshi, and N. C. Joshi (2020). Green synthesis and characterization of gold nanoparticles using Mucuna monosperma. J Nanosci Technol. https://doi.org/10.30799/jnst.309.20060301.

    Article  Google Scholar 

  47. J. Uddin (2018). Terahertz multispectral imaging for the analysis of gold nanoparticles’ size and the number of unit cells in comparison with other techniques. Int J Biosens Bioelectron. https://doi.org/10.15406/ijbsbe.2018.04.00118.

    Article  Google Scholar 

  48. V. K. T. Ngo, D. G. Nguyen, T. P. Huynh, and Q. V. Lam (2016). A low cost technique for synthesis of gold nanoparticles using microwave heating and its application in signal amplification for detecting Escherichia coli O157:H7 bacteria. Adv Nat Sci Nanosci Nanotechnol. https://doi.org/10.1088/2043-6262/7/3/035016.

    Article  Google Scholar 

  49. S. Alex and A. Tiwari (2015). Functionalized gold nanoparticles: synthesis, properties and applications-a review. J Nanosci Nanotechnol. https://doi.org/10.1166/jnn.2015.9718.

    Article  PubMed  Google Scholar 

  50. K. Mahato, et al. (2019). Gold nanoparticle surface engineering strategies and their applications in biomedicine and diagnostics. 3 Biotech. https://doi.org/10.1007/s13205-019-1577-z.

    Article  PubMed  PubMed Central  Google Scholar 

  51. J. S. Suk, Q. Xu, N. Kim, J. Hanes, and L. M. Ensign (2016). PEGylation as a strategy for improving nanoparticle-based drug and gene delivery. Adv Drug Deliv Rev. https://doi.org/10.1016/j.addr.2015.09.012.

    Article  PubMed  Google Scholar 

  52. S. Anniebell and S. C. Gopinath (2018). Polymer conjugated gold nanoparticles in biomedical applications. Curr. Med. Chem. 25 (12), 1433–1445. https://doi.org/10.2174/0929867324666170116123633.

    Article  CAS  PubMed  Google Scholar 

  53. A. P. Tiwari, S. J. Ghosh, and S. H. Pawar (2015). Biomedical applications based on magnetic nanoparticles: DNA interactions. Anal. Methods 7 (24), 10109–10120. https://doi.org/10.1039/C5AY02334C.

    Article  CAS  Google Scholar 

  54. R. K. DeLong, C. M. Reynolds, Y. Malcolm, A. Schaeffer, T. Severs, and A. Wanekaya (2010). Functionalized gold nanoparticles for the binding, stabilization, and delivery of therapeutic DNA, RNA, and other biological macromolecules. Nanotechnol. Sci. Appl. 3, 53. https://doi.org/10.2147/NSA.S8984.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. S. J. Amina and B. Guo (2020). A review on the synthesis and functionalization of gold nanoparticles as a drug delivery vehicle. Int J Nanomed. https://doi.org/10.2147/IJN.S279094.

    Article  Google Scholar 

  56. I. A. Quintela, B. G. De Los Reyes, C. S. Lin, and V. C. H. Wu (2019). Simultaneous colorimetric detection of a variety of Salmonella spp. In food and environmental samples by optical biosensing using oligonucleotide-gold nanoparticles. Front Microbiol. https://doi.org/10.3389/fmicb.2019.01138.

    Article  PubMed  PubMed Central  Google Scholar 

  57. M. P. Patil and G. D. Kim (2017). Eco-friendly approach for nanoparticles synthesis and mechanism behind antibacterial activity of silver and anticancer activity of gold nanoparticles. Appl. Microbiol. Biotechnol. 101 (1), 79–92. https://doi.org/10.1007/s00253-016-8012-8.

    Article  CAS  PubMed  Google Scholar 

  58. V. B. Borse, A. N. Konwar, R. D. Jayant, and P. O. Patil (2020). Perspectives of characterization and bioconjugation of gold nanoparticles and their application in lateral flow immunosensing. Drug Deliv. Transl. Res. 10 (4), 878–902. https://doi.org/10.1007/s13346-020-00771-y.

    Article  CAS  PubMed  Google Scholar 

  59. S. Her, D. A. Jaffray, and C. Allen (2017). Gold nanoparticles for applications in cancer radiotherapy: mechanisms and recent advancements. Adv. Drug Deliv. Rev. 109, 84–101. https://doi.org/10.1016/j.addr.2015.12.012.

    Article  CAS  PubMed  Google Scholar 

  60. S. Rana, A. Bajaj, R. Mout, and V. M. Rotello (2012). Monolayer coated gold nanoparticles for delivery applications. Adv. Drug Deliv. Rev. 64 (2), 200–216. https://doi.org/10.1016/j.addr.2011.08.006.

    Article  CAS  PubMed  Google Scholar 

  61. S. A. Akintelu, B. Yao, and A. S. Folorunso (2021). Bioremediation and pharmacological applications of gold nanoparticles synthesized from plant materials. Heliyon. https://doi.org/10.1016/j.heliyon.2021.e06591.

    Article  PubMed  PubMed Central  Google Scholar 

  62. W. Li and X. Chen (2015). Gold nanoparticles for photoacoustic imaging. Nanomedicine. https://doi.org/10.2217/nnm.14.169.

    Article  PubMed  PubMed Central  Google Scholar 

  63. P. Si, et al. (2021). Gold nanomaterials for optical biosensing and bioimaging. Nanoscale Adv. https://doi.org/10.1039/d0na00961j.

    Article  PubMed  PubMed Central  Google Scholar 

  64. W. Qian, X. Huang, B. Kang, and M. A. El-Sayed (2010). Dark-field light scattering imaging of living cancer cell component from birth through division using bioconjugated gold nanoprobes. J Biomed Opt. https://doi.org/10.1117/1.3477179.

    Article  PubMed  Google Scholar 

  65. X. Y. Wan, et al. (2014). Real-time light scattering tracking of gold nanoparticles-bioconjugated respiratory syncytial virus infecting HEp-2 cells. Sci Rep. https://doi.org/10.1038/srep04529.

    Article  PubMed  PubMed Central  Google Scholar 

  66. N. Khlebtsov, V. Bogatyrev, L. Dykman, B. Khlebtsov, S. Staroverov, A. Shirokov, L. Matora, V. Khanadeev, T. Pylaev, N. Tsyganova, and G. Terentyuk (2013). Analytical and theranostic applications of gold nanoparticles and multifunctional nanocomposites. Theranostics 3 (3), 167. https://doi.org/10.7150/thno.5716.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. C. P. García, V. Sumbayev, D. Gilliland, I. M. Yasinska, B. F. Gibbs, D. Mehn, L. Calzolai, and F. Rossi (2013). Microscopic analysis of the interaction of gold nanoparticles with cells of the innate immune system. Sci. Rep. 3 (1), 1–7. https://doi.org/10.1038/srep01326.

    Article  CAS  Google Scholar 

  68. Y. C. Dong, et al. (2019). Effect of gold nanoparticle size on their properties as contrast agents for computed tomography. Sci Rep. https://doi.org/10.1038/s41598-019-50332-8.

    Article  PubMed  PubMed Central  Google Scholar 

  69. F. Y. Kong, J. W. Zhang, R. F. Li, Z. W. Wang, W. J. Wang, and W. Wang (2017). Unique roles of gold nanoparticles in drug delivery, targeting and imaging applications. Molecules 22 (9), 1445. https://doi.org/10.3390/molecules22091445.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. A. Madhusudhan, et al. (2014). Efficient ph dependent drug delivery to target cancer cells by gold nanoparticles capped with carboxymethyl chitosan. Int J Mol Sci. https://doi.org/10.3390/ijms15058216.

    Article  PubMed  PubMed Central  Google Scholar 

  71. S. Aryal, J. J. Grailer, S. Pilla, D. A. Steeber, and S. Gong (2009). Doxorubicin conjugated gold nanoparticles as water-soluble and pH-responsive anticancer drug nanocarriers. J Mater Chem. https://doi.org/10.1039/b914071a.

    Article  Google Scholar 

  72. S. Salazar, N. Yutronic, M. J. Kogan, and P. Jara (2021). Cyclodextrin nanosponges inclusion compounds associated with gold nanoparticles for potential application in the photothermal release of melphalan and cytoxan. Int J Mol Sci. https://doi.org/10.3390/ijms22126446.

    Article  PubMed  PubMed Central  Google Scholar 

  73. S. S. Agasti, A. Chompoosor, C. C. You, P. Ghosh, C. K. Kim, and V. M. Rotello (2009). Photoregulated release of caged anticancer drugs from gold nanoparticles. J Am Chem Soc. https://doi.org/10.1021/ja900591t.

    Article  PubMed  PubMed Central  Google Scholar 

  74. V. Voliani, G. Signore, R. Nifosi, F. Ricci, S. Luin, and F. Beltram (2012). Smart delivery and controlled drug release with gold nanoparticles: new frontiers in nanomedicine. Recent Patents Nanomed. https://doi.org/10.2174/1877913111202010034.

    Article  Google Scholar 

  75. P. S. Sadalage, R. V. Patil, D. V. Havaldar, S. S. Gavade, A. C. Santos, and K. D. Pawar (2021). Optimally biosynthesized, PEGylated gold nanoparticles functionalized with quercetin and camptothecin enhance potential anti-inflammatory, anti-cancer and anti-angiogenic activities. J Nanobiotechnol. https://doi.org/10.1186/s12951-021-00836-1.

    Article  Google Scholar 

  76. J. N. Payne, et al. (2016). Novel synthesis of kanamycin conjugated gold nanoparticles with potent antibacterial activity. Front Microbiol. https://doi.org/10.3389/fmicb.2016.00607.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Y. C. Shiang, et al. (2013). Highly efficient inhibition of human immunodeficiency virus type 1 reverse transcriptase by aptamers functionalized gold nanoparticles. Nanoscale. https://doi.org/10.1039/c3nr33403a.

    Article  PubMed  Google Scholar 

  78. F. Dong, Z. Cui, G. Teng, K. Shangguan, Q. Zhang, and G. Zhang (2021). Green synthesis of gold nanoparticles (AuNPs) as potential drug carrier for treatment and care of cardiac hypertrophy agents. J Clust Sci. https://doi.org/10.1007/s10876-021-02003-w.

    Article  Google Scholar 

  79. G. De Bem Silveira, A. P. Muller, R. A. Machado-De-Ávila, and P. C. L. Silveira (2021). Advance in the use of gold nanoparticles in the treatment of neurodegenerative diseases: new perspectives. Neural Regen Res. https://doi.org/10.4103/1673-5374.313040.

    Article  Google Scholar 

  80. S. Sivanesan and S. Rajeshkumar, Gold nanoparticles in diagnosis and treatment of alzheimer’s disease, in M. Rai and A. Yadav (eds.), Nanobiotechnology in Neurodegenerative Diseases (Springer, Cham, 2019).

    Google Scholar 

  81. A. Gupta, S. Mumtaz, C. H. Li, I. Hussain, and V. M. Rotello (2019). Combatting antibiotic-resistant bacteria using nanomaterials. Chem Soc Rev. https://doi.org/10.1039/c7cs00748e.

    Article  PubMed  PubMed Central  Google Scholar 

  82. T. P. S. Dasari and Y. Zhang (2015). Antibacterial activity and cytotoxicity of gold (I) and (III) ions and gold nanoparticles. Biochem Pharmacol Open Access. https://doi.org/10.4172/2167-0501.1000199.

    Article  Google Scholar 

  83. M. Okkeh, N. Bloise, E. Restivo, L. De Vita, P. Pallavicini, and L. Visai (2021). Gold nanoparticles: can they be the next magic bullet for multidrug-resistant bacteria? Nanomaterials. https://doi.org/10.3390/nano11020312.

    Article  PubMed  PubMed Central  Google Scholar 

  84. C. P. Mandhata, C. R. Sahoo, C. S. Mahanta, and R. N. Padhy (2021). Isolation, biosynthesis and antimicrobial activity of gold nanoparticles produced with extracts of Anabaena spiroides. Bioprocess Biosyst Eng. https://doi.org/10.1007/s00449-021-02544-4.

    Article  PubMed  Google Scholar 

  85. M. Nidhin, D. Saneha, S. Hans, A. Varghese, Z. Fatima, and S. Hameed (2019). Studies on the antifungal activity of biotemplated gold nanoparticles over Candida albicans. Mater Res Bull. https://doi.org/10.1016/j.materresbull.2019.110563.

    Article  Google Scholar 

  86. M. Eskandari-Nojedehi, H. Jafarizadeh-Malmiri, and J. Rahbar-Shahrouzi (2018). Hydrothermal green synthesis of gold nanoparticles using mushroom (Agaricus bisporus) extract: Physico-chemical characteristics and antifungal activity studies. Green Process Synth. https://doi.org/10.1515/gps-2017-0004.

    Article  Google Scholar 

  87. M. A. Meléndez-Villanueva, et al. (2019). Virucidal activity of gold nanoparticles synthesized by green chemistry using garlic extract. Viruses. https://doi.org/10.3390/v11121111.

    Article  PubMed  PubMed Central  Google Scholar 

  88. J. Kim, et al. (2020). Porous gold nanoparticles for attenuating infectivity of influenza A virus. J Nanobiotechnol. https://doi.org/10.1186/s12951-020-00611-8.

    Article  Google Scholar 

  89. A. Dhanasezhian, S. Srivani, K. Govindaraju, P. Parija, S. Sasikala, and M. R. Ramesh Kumar (2019). Anti-herpes simplex virus (HSV-1 and HSV-2) activity of biogenic gold and silver nanoparticles using seaweed Sargassum wightii. Indian J. Geo-Mar. Sci. 48 (8), 1252.

    Google Scholar 

  90. A. Zacheo, et al. (2020). Multi-sulfonated ligands on gold nanoparticles as virucidal antiviral for Dengue virus. Sci Rep. https://doi.org/10.1038/s41598-020-65892-3.

    Article  PubMed  PubMed Central  Google Scholar 

  91. V. Lysenko, et al. (2018). Nanoparticles as antiviral agents against adenoviruses. Adv Nat Sci Nanosci Nanotechnol. https://doi.org/10.1088/2043-6254/aac42a.

    Article  Google Scholar 

  92. Y. Rao, G. K. Inwati, and M. Singh (2017). Green synthesis of capped gold nanoparticles and their effect on Gram-positive and Gram-negative bacteria. Fut Sci OA. https://doi.org/10.4155/fsoa-2017-0062.

    Article  Google Scholar 

  93. N. Rattanata, et al. (2016). Gallic acid conjugated with gold nanoparticles: antibacterial activity and mechanism of action on foodborne pathogens. Int J Nanomed. https://doi.org/10.2147/IJN.S109795.

    Article  Google Scholar 

  94. P. Bagga, H. H. Siddiqui, J. Akhtar, T. Mahmood, M. Zahera, and M. S. Khan (2017). Gold nanoparticles conjugated levofloxacin: for improved antibacterial activity over levofloxacin alone. Curr Drug Deliv. https://doi.org/10.2174/1567201814666170316113432.

    Article  PubMed  Google Scholar 

  95. D. Hanahan and R. A. Weinberg (2011). Hallmarks of cancer: The next generation. Cell. https://doi.org/10.1016/j.cell.2011.02.013.

    Article  PubMed  Google Scholar 

  96. R. Geetha, T. Ashokkumar, S. Tamilselvan, K. Govindaraju, M. Sadiq, and G. Singaravelu (2013). Green synthesis of gold nanoparticles and their anticancer activity. Cancer Nanotechnol. 4 (4–5), 91–98. https://doi.org/10.1007/s12645-013-0040-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. S. P. Vinay, H. N. Sumedha, M. Shashank, G. Nagaraju, and N. Chandrasekhar (2021). In-vitro antibacterial, antioxidant and cytotoxic potential of gold nanoparticles synthesized using novel Elaeocarpus ganitrus seeds extract. J. Sci.: Adv. Mater. Devices 6 (1), 127–133. https://doi.org/10.1016/j.jsamd.2020.09.008.

    Article  CAS  Google Scholar 

  98. V. Ramalingam, K. Varunkumar, V. Ravikumar, and R. Rajaram (2018). Target delivery of doxorubicin tethered with PVP stabilized gold nanoparticles for effective treatment of lung cancer. Sci Rep. https://doi.org/10.1038/s41598-018-22172-5.

    Article  PubMed  PubMed Central  Google Scholar 

  99. G. F. Paciotti, et al. (2016). Synthesis and evaluation of paclitaxel-loaded gold nanoparticles for tumor-targeted drug delivery. Bioconjug Chem. https://doi.org/10.1021/acs.bioconjchem.6b00405.

    Article  PubMed  PubMed Central  Google Scholar 

  100. M. Yafout, A. Ousaid, Y. Khayati, and I. S. El Otmani (2021). Gold nanoparticles as a drug delivery system for standard chemotherapeutics: a new lead for targeted pharmacological cancer treatments. Sci Afr. https://doi.org/10.1016/j.sciaf.2020.e00685.

    Article  Google Scholar 

  101. A. Graczyk, R. Pawlowska, D. Jedrzejczyk, and A. Chworos (2020). Gold nanoparticles in conjunction with nucleic acids as a modern molecular system for cellular delivery. Molecules. https://doi.org/10.3390/molecules25010204.

    Article  PubMed  PubMed Central  Google Scholar 

  102. A. Ekin, O. F. Karatas, M. Culha, and M. Ozen (2014). Designing a gold nanoparticle-based nanocarrier for microRNA transfection into the prostate and breast cancer cells. J Gene Med. https://doi.org/10.1002/jgm.2810.

    Article  PubMed  Google Scholar 

  103. J. M. Carnerero, A. Jimenez-Ruiz, P. M. Castillo, and R. Prado-Gotor (2017). Covalent and non-covalent DNA–gold-nanoparticle interactions: new avenues of research. ChemPhysChem. https://doi.org/10.1002/cphc.201601077.

    Article  PubMed  Google Scholar 

  104. G. Han, et al. (2006). Light-regulated release of DNA and its delivery to nuclei by means of photolabile gold nanoparticles. Angew Chem Int Ed. https://doi.org/10.1002/anie.200600214.

    Article  Google Scholar 

  105. K. Sztandera, M. Gorzkiewicz, and B. Klajnert-Maculewicz (2019). Gold nanoparticles in cancer treatment. Mol Pharm. https://doi.org/10.1021/acs.molpharmaceut.8b00810.

    Article  PubMed  Google Scholar 

  106. R. S. Darweesh, N. M. Ayoub, and S. Nazzal (2019). Gold nanoparticles and angiogenesis: molecular mechanisms and biomedical applications. Int J Nanomed. https://doi.org/10.2147/IJN.S223941.

    Article  Google Scholar 

  107. R. Bhattacharya, P. Mukherjee, Z. Xiong, A. Atala, S. Soker, and D. Mukhopadhyay (2004). Gold nanoparticles inhibit VEGF165-induced proliferation of HUVEC cells. Nano Lett. https://doi.org/10.1021/nl0483789.

    Article  Google Scholar 

  108. M. S. Verma, J. L. Rogowski, L. Jones, and F. X. Gu (2015). Colorimetric biosensing of pathogens using gold nanoparticles. Biotechnol Adv. https://doi.org/10.1016/j.biotechadv.2015.03.003.

    Article  PubMed  Google Scholar 

  109. A. Amirjani and E. Rahbarimehr (2021). Recent advances in functionalization of plasmonic nanostructures for optical sensing. Microchim Acta. https://doi.org/10.1007/s00604-021-04714-3.

    Article  Google Scholar 

  110. K. Ganguly, D. K. Patel, S. D. Dutta, and K. T. Lim (2021). TEMPO-cellulose nanocrystal-capped gold nanoparticles for colorimetric detection of pathogenic DNA. ACS Omega. https://doi.org/10.1021/acsomega.1c00359.

    Article  PubMed  PubMed Central  Google Scholar 

  111. L. Tang and J. Casas (2014). Quantification of cardiac biomarkers using label-free and multiplexed gold nanorod bioprobes for myocardial infarction diagnosis. Biosens Bioelectron. https://doi.org/10.1016/j.bios.2014.04.043.

    Article  PubMed  PubMed Central  Google Scholar 

  112. R. Li, et al. (2015). Sensitive detection of carcinoembryonic antigen using surface plasmon resonance biosensor with gold nanoparticles signal amplification. Talanta. https://doi.org/10.1016/j.talanta.2015.03.041.

    Article  PubMed  PubMed Central  Google Scholar 

  113. X. Lu, X. Dong, K. Zhang, X. Han, X. Fang, and Y. Zhang (2013). A gold nanorods-based fluorescent biosensor for the detection of hepatitis B virus DNA based on fluorescence resonance energy transfer. Analyst. https://doi.org/10.1039/c2an36099c.

    Article  PubMed  PubMed Central  Google Scholar 

  114. J. M. Pingarrón, P. Yáñez-Sedeño, and A. González-Cortés (2008). Gold nanoparticle-based electrochemical biosensors. Electrochim Acta. https://doi.org/10.1016/j.electacta.2008.03.005.

    Article  Google Scholar 

  115. E. Hutter and D. Maysinger (2013). Gold-nanoparticle-based biosensors for detection of enzyme activity. Trends Pharmacol Sci. https://doi.org/10.1016/j.tips.2013.07.002.

    Article  PubMed  Google Scholar 

  116. A. F. Versiani, et al. (2016). Gold nanoparticles and their applications in biomedicine. Fut Virol. https://doi.org/10.2217/fvl-2015-0010.

    Article  Google Scholar 

  117. A. Salama, A. Mohamed, N. M. Aboamera, T. A. Osman, and A. Khattab (2018). Photocatalytic degradation of organic dyes using composite nanofibers under UV irradiation. Appl. Nanosci. 8 (1), 155–161. https://doi.org/10.1007/s13204-018-0660-9.

    Article  CAS  Google Scholar 

  118. S. Mishra, T. K. Sahu, P. Verma, P. Kumar, and S. K. Samanta (2019). Microwave-assisted catalytic degradation of brilliant green by spinel zinc ferrite sheets. ACS Omega 4 (6), 10411–10418. https://doi.org/10.1021/acsomega.9b00914.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. P. K. Ngoc, T. K. Mac, H. T. Nguyen, T. D. Thanh, P. Van Vinh, B. T. Phan, A. T. Duong, and R. Das (2021). Excellent organic dye adsorption capacity and recyclability of hydrothermally synthesized α-Fe2O3 nanoplates and nanorices. J. Sci.: Adv. Mater. Devices 6 (2), 245–253. https://doi.org/10.1016/j.jsamd.2021.02.006.

    Article  CAS  Google Scholar 

  120. D. Baruah, M. Goswami, R. N. Yadav, A. Yadav, and A. M. Das (2018). Biogenic synthesis of gold nanoparticles and their application in photocatalytic degradation of toxic dyes. J. Photochem. Photobiol. B: Biol. 186, 51–58. https://doi.org/10.1016/j.jphotobiol.2018.07.002.

    Article  CAS  Google Scholar 

  121. M. Hosny, M. Fawzy, Y. A. El-Badry, E. E. Hussein, and A. S. Eltaweil (2022). Plant-assisted synthesis of gold nanoparticles for photocatalytic, anticancer, and antioxidant applications. J. Saudi Chem. Soc. 10, 101419. https://doi.org/10.1016/j.jscs.2022.101419.

    Article  CAS  Google Scholar 

  122. M. Hosny, A. S. Eltaweil, M. Mostafa, Y. A. El-Badry, E. E. Hussein, A. M. Omer, and M. Fawzy (2022). Facile synthesis of gold nanoparticles for anticancer, antioxidant applications, and photocatalytic degradation of toxic organic pollutants. ACS Omega. https://doi.org/10.1021/acsomega.1c06714.

    Article  PubMed  PubMed Central  Google Scholar 

  123. H. Padalia and S. Chanda (2021). Antioxidant and anticancer activities of gold nanoparticles synthesized using aqueous leaf extract of Ziziphus nummularia. BioNanoScience 11 (2), 281–294. https://doi.org/10.1007/s12668-021-00849-y.

    Article  Google Scholar 

  124. L. Chen, H. Deng, H. Cui, J. Fang, Z. Zuo, J. Deng, Y. Li, X. Wang, and L. Zhao (2018). Inflammatory responses and inflammation-associated diseases in organs. Oncotarget. https://doi.org/10.18632/oncotarget.23208.

    Article  PubMed  PubMed Central  Google Scholar 

  125. W. Gao, L. Wang, K. Wang, L. Sun, Y. Rao, A. Ma, M. Zhang, Q. Li, and H. Yang (2019). Enhanced anti-inflammatory activity of peptide-gold nanoparticle hybrids upon cigarette smoke extract modification through TLR inhibition and autophagy induction. ACS Appl. Mater. Interfaces 11 (36), 32706–32719. https://doi.org/10.1021/acsami.9b10536.

    Article  CAS  PubMed  Google Scholar 

  126. W. Gao, Y. Wang, Y. Xiong, L. Sun, L. Wang, K. Wang, H. Y. Lu, A. Bao, S. E. Turvey, Q. Li, and H. Yang (2019). Size-dependent anti-inflammatory activity of a peptide-gold nanoparticle hybrid in vitro and in a mouse model of acute lung injury. Acta Biomater. 1 (85), 203–217. https://doi.org/10.1016/j.actbio.2018.12.046.

    Article  CAS  Google Scholar 

  127. S. A. Bansal, V. Kumar, J. Karimi, A. P. Singh, and S. Kumar (2020). Role of gold nanoparticles in advanced biomedical applications. Nanoscale Adv. 2 (9), 3764–3787. https://doi.org/10.1039/d0na00472c.

    Article  PubMed  PubMed Central  Google Scholar 

  128. M. A. Raji, R. Chinnappan, A. Shibl, G. Suaifan, K. Weber, D. Cialla-May, J. Popp, E. El Shorbagy, K. Al-Kattan, and M. Zourob (2021). Low-cost colorimetric diagnostic screening assay for methicillin resistant Staphylococcus aureus. Talanta 225, 121946. https://doi.org/10.1016/j.talanta.2020.121946.

    Article  CAS  PubMed  Google Scholar 

  129. M. Marin, M. V. Nikolic, and J. Vidic (2021). Rapid point-of-need detection of bacteria and their toxins in food using gold nanoparticles. Compr. Rev. Food Sci. Food Saf. 20 (6), 5880–5900. https://doi.org/10.1111/1541-4337.12839.

    Article  CAS  PubMed  Google Scholar 

  130. C. N. Elliott, M. C. Becerra, J. C. Bennett, L. Graham, and G. L. Hallett-Tapley (2021). Facile synthesis of antibiotic-functionalized gold nanoparticles for colorimetric bacterial detection. RSC Adv. 11 (23), 14161–14168. https://doi.org/10.1039/d1ra01316e.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. N. R. Sibuyi, K. L. Moabelo, A. O. Fadaka, S. Meyer, M. O. Onani, A. M. Madiehe, and M. Meyer (2021). Multifunctional gold nanoparticles for improved diagnostic and therapeutic applications: a review. Nanoscale Res. Lett. 16 (1), 1–27. https://doi.org/10.1186/s11671-021-03632-w.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work has been supported by University funded project (No. DYPES/DU/R&D/2021/274).

Author information

Authors and Affiliations

Authors

Contributions

TP has written the manuscript, RG and AV have helped with manuscript writing and graphical interpretation, and AT is responsible for conceptualization, writing of the manuscript, and overall preparation of the review.

Corresponding author

Correspondence to Arpita Pandey Tiwari.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest in the present work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patil, T., Gambhir, R., Vibhute, A. et al. Gold Nanoparticles: Synthesis Methods, Functionalization and Biological Applications. J Clust Sci 34, 705–725 (2023). https://doi.org/10.1007/s10876-022-02287-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-022-02287-6

Keywords

Navigation