Skip to main content
Log in

Green Synthesis of a Novel PtFe2O4@Ag Nanocomposite: Implications for Cytotoxicity, Gene Expression and Anti-Cancer Studies in Gastric Cancer Cell Line

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

In recent years, many attempts have been made to find novel anticancer agents for the treatment of advanced and metastatic gastric cancers. Metal nanoparticles (NPs) have gained attention for their unique characteristics to be used in anticancer chemotherapy. Silver and platinum have been extensively studied for their biomedical applications. However, the functionalization of such NPs was less described. In this work, we synthesized PtFe2O4 NPs and conjugated them with silver NPs using the Scenedesmus obliquus extract. The synthesized nanocomposite was characterized using physiochemical assays and then, cytotoxicity potential of PtFe2O4@Ag nanocomposite against AGS cells was investigated. Proper synthesis of PtFe2O4@Ag NPs was confirmed by the XRD, SEM and TEM, and FT-IR. The spherical nanocomposite was synthesized with a size range of 20–40 nm. Also, the purity of the nanocomposite was evaluated using EDX assay, and the stability of the particles was determined by zeta potential (− 35.2 mV). The AGS cells were more susceptible to the nanocomposite (IC50 = 48 µg/mL) than HEK293 cells (IC50 = 158 µg/mL). Hoechst staining and flow cytometry assay indicated nuclear damages, chromatin fragmentation, and also apoptosis induction among nanocomposite treated cells. Following exposure to PtFe2O4@Ag NPs, the expression and activity of caspase-3 were reduced by 1.41 and 1.9 folds, respectively. The qRT-PCR assay showed that the expression of the Bax gene increased by 2.2 folds and the Bcl2 gene reduced to 0.62 folds, in comparison with the control cells. This work showed a promising anticancer potential of PtFe2O4@Ag NPs towards gastric cancer cells and elucidated the molecular mechanism of their cytotoxicity potential via triggering the apoptotic pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. L. P. Carcas (2014). Gastric cancer review. J. Carcinogen. 13, 14. https://doi.org/10.4103/1477-3163.146506.

    Article  CAS  Google Scholar 

  2. Y. Bendale, V. Bendale, and S. Paul (2017). Evaluation of cytotoxic activity of platinum nanoparticles against normal and cancer cells and its anticancer potential through induction of apoptosis. Integrat. Med. Res. 6 (2), 141–148. https://doi.org/10.1016/j.imr.2017.01.006.

    Article  Google Scholar 

  3. I. Kostova (2006). Platinum complexes as anticancer agents. Recent Patents Anti-Cancer Drug Discov. 1 (1), 1–22. https://doi.org/10.2174/157489206775246458.

    Article  CAS  Google Scholar 

  4. L. Lin, H. Cui, G. Zeng, M. Chen, H. Zhang, M. Xu, X. Shen, C. Bortolini, and M. Dong (2013). Ag–CuFe 2 O 4 magnetic hollow fibers for recyclable antibacterial materials. J. Mater. Chem. B 1 (21), 2719–2723. https://doi.org/10.1039/C3TB20223B.

    Article  CAS  PubMed  Google Scholar 

  5. M. Ahamed, M. J. Akhtar, H. A. Alhadlaq, and A. Alshamsan (2016). Copper ferrite nanoparticle-induced cytotoxicity and oxidative stress in human breast cancer MCF-7 cells. Colloids Surf. B: Biointerfaces 142, 46–54. https://doi.org/10.1016/j.colsurfb.2016.02.043.

    Article  CAS  PubMed  Google Scholar 

  6. Y. P. Yew, K. Shameli, M. Miyake, N. B. B. A. Khairudin, S. E. B. Mohamad, T. Naiki, and K. X. Lee (2020). Green biosynthesis of superparamagnetic magnetite Fe3O4 nanoparticles and biomedical applications in targeted anticancer drug delivery system: a review. Arab. J. Chem. 13 (1), 2287–2308. https://doi.org/10.1016/j.arabjc.2018.04.013.

    Article  CAS  Google Scholar 

  7. A. Salehzadeh, A. S. Naeemi, L. Khaknezhad, Z. Moradi-Shoeili, and S. A. S. Shandiz (2019). Fe3O4/Ag nanocomposite biosynthesized using Spirulina platensis extract and its enhanced anticancer efficiency. IET Nanobiotechnol. https://doi.org/10.1049/iet-nbt.2018.5364.

    Article  PubMed  PubMed Central  Google Scholar 

  8. E. W. Becker (2007). Micro-algae as a source of protein. Biotechnol. Adv. 25 (2), 207–210.

    Article  CAS  PubMed  Google Scholar 

  9. D. A. Marrez, M. M. Naguib, Y. Y. Sultan, and A. M. Higazy (2019). Antimicrobial and anticancer activities of Scenedesmus obliquus metabolites. Heliyon 5 (3), e01404. https://doi.org/10.1016/j.heliyon.2019.e01404.

    Article  PubMed  PubMed Central  Google Scholar 

  10. N. Shokoofeh, Z. Moradi-Shoeili, A. S. Naeemi, A. Jalali, M. Hedayati, and A. Salehzadeh (2019). Biosynthesis of Fe 3 O 4@Ag nanocomposite and evaluation of its performance on expression of norA and norB efflux pump genes in ciprofloxacin-resistant Staphylococcus aureus. Biol Trace Element Res. https://doi.org/10.1007/s12011-019-1632-y.

    Article  Google Scholar 

  11. S. A. S. Shandiz, A. Montazeri, M. Abdolhosseini, S. H. Shahrestani, M. Hedayati, Z. Moradi-Shoeili, and A. Salehzadeh (2018). Functionalization of Ag nanoparticles by glutamic acid and conjugation of Ag@ Glu by thiosemicarbazide enhances the apoptosis of human breast cancer MCF-7 cells. J. Clust. Sci. 29 (6), 1107–1114. https://doi.org/10.1007/s10876-018-1424-0.

    Article  CAS  Google Scholar 

  12. M. Bejarbaneh, Z. Moradi-Shoeili, A. Jalali, and A. Salehzadeh (2020). Synthesis of cobalt hydroxide nano-flakes functionalized with glutamic acid and conjugated with thiosemicarbazide for anticancer activities against human breast cancer cells. Biol Trace Element Res. https://doi.org/10.1007/s12011-020-02049-3.

    Article  Google Scholar 

  13. F. Vetr, Z. Moradi-Shoeili, and S. Özkar (2018). Oxidation of o-phenylenediamine to 2, 3-diaminophenazine in the presence of cubic ferrites MFe2O4 (M= Mn Co, Ni, Zn) and the application in colorimetric detection of H2O2. Appl. Organometall. Chem. 32 (9), e4465. https://doi.org/10.1002/aoc.4465.

    Article  CAS  Google Scholar 

  14. R. Dobrucka (2016). Synthesis and structural characteristic of platinum nanoparticles using herbal Bidens Tripartitus extract. J. Inorgan. Organometall. Polym. Mater. 26, 219–225. https://doi.org/10.1007/s10904-015-0305-3.

    Article  CAS  Google Scholar 

  15. A. V. Pansare, D. K. Kulal, A. A. Shedge, and V. R. Patil (2016). Green synthesis of anticancerous honeycomb PtNPs clusters: their alteration effect on BSA and HsDNA using fluorescence probe. J. Photochem. Photobiol. B: Biol. 162, 473–485. https://doi.org/10.1016/j.jphotobiol.2016.07.021.

    Article  CAS  Google Scholar 

  16. P. B. Santhosh and N. P. Ulrih (2013). Multifunctional superparamagnetic iron oxide nanoparticles: promising tools in cancer theranostics. Cancer Letter 336, 8–17. https://doi.org/10.1016/j.canlet.2013.04.032.

    Article  CAS  Google Scholar 

  17. K. C. Hembram, R. Kumar, L. Kandha, P. K. Parhi, C. N. Kundu, and B. K. Bindhani (2018). Therapeutic prospective of plant-induced silver nanoparticles: application as antimicrobial and anticancer agent. Artif. Cells Nanomed. Biotechnol. 46, S38–S51. https://doi.org/10.1080/21691401.2018.1489262.

    Article  PubMed  Google Scholar 

  18. B. Rosenberg, L. VanCamp, J. E. Trosko, and V. H. Mansour (1969). Platinum compounds: a new class of potent antitumour agents. Nature 222, 385–386. https://doi.org/10.1038/222385a0.

    Article  CAS  PubMed  Google Scholar 

  19. T. C. Johnstone, G. Y. Park, and S. J. Lippard (2014). Understanding and improving platinum anticancer drugs–phenanthriplatin. Anticancer Res 34 (1), 471–476.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. X. Wang, X. Wang, and Z. Guo (2015). Functionalization of platinum complexes for biomedical applications. Accounts Chem Res. 48 (9), 2622–2631. https://doi.org/10.1021/acs.accounts.5b00203.

    Article  CAS  Google Scholar 

  21. J. Yang, X. R. Sun, W. W. Mao, M. H. Sui, J. B. Tang, and Y. Q. Shen (2012). Conjugate of Pt(IV)−histone deacetylase inhibitor as a prodrug for cancer chemotherapy. Mol. Pharm. 9, 2793–2800. https://doi.org/10.1021/mp200597r.

    Article  CAS  PubMed  Google Scholar 

  22. B. W. Harper, A. M. Krause-Heuer, M. P. Grant, M. Manohar, K. B. Garbutcheon-Singh, and J. R. Aldrich-Wright (2010). Advances in platinum chemotherapeutics. Chem. A Eur. J. 16, 7064–7077.

    Article  CAS  Google Scholar 

  23. M. Jeyaraj, S. Gurunathan, M. Qasim, M. H. Kang, and J. H. Kim (2019). A comprehensive review on the synthesis, characterization, and biomedical application of platinum nanoparticles. Nanomaterials 9 (12), 1719. https://doi.org/10.3390/nano9121719.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. W. Sun, S. Mignani, M. Shen, and X. Shi (2016). Dendrimer-based magnetic iron oxide nanoparticles: their synthesis and biomedical applications. Drug Discov. Today 21, 1873–1885. https://doi.org/10.1016/j.drudis.2016.06.028.

    Article  CAS  PubMed  Google Scholar 

  25. Y. L. Cho, H. W. S. Tan, Q. Saquib, Y. Ren, J. Ahmad, R. Wahab, and H. M. Shen (2020). Dual role of oxidative stress-JNK activation in autophagy and apoptosis induced by nickel oxide nanoparticles in human cancer cells. Free Radic. Biol. Med. 153, 173–186. https://doi.org/10.1016/j.freeradbiomed.2020.03.027.

    Article  CAS  PubMed  Google Scholar 

  26. H. F. Lodish, Molecular cell biology, 4th ed. (W.H. Freeman, New York, 2000).

    Google Scholar 

  27. A. G. Porter and R. U. Jänicke (1999). Emerging roles of caspase-3 in apoptosis. Cell Death Differ. 6 (2), 99–104. https://doi.org/10.1038/sj.cdd.4400476.

    Article  CAS  PubMed  Google Scholar 

  28. L. Zhang, J. Yu, B. H. Park, K. W. Kinzler, and B. Vogelstein (2000). Role of BAX in the apoptotic response to anticancer agents. Science 290 (5493), 989–992. https://doi.org/10.1126/science.290.5493.989.

    Article  CAS  PubMed  Google Scholar 

  29. H. Banu, N. Renuka, S. M. Faheem, R. Ismail, V. Singh, Z. Saadatmand, and G. Vasanthakumar (2018). Gold and silver nanoparticles biomimetically synthesized using date palm pollen extract-induce apoptosis and regulate p53 and Bcl-2 expression in human breast adenocarcinoma cells. Biol. Trace Element Res. 186 (1), 122–134. https://doi.org/10.1007/s12011-018-1287-0.

    Article  CAS  Google Scholar 

  30. Y. Xu, L. Liu, X. Qiu, Z. Liu, H. Li, Z. Li, and E. Wang (2012). CCL21/CCR7 prevents apoptosis via the ERK pathway in human non-small cell lung cancer cells. PloS One 7 (3), e33262. https://doi.org/10.1371/journal.pone.0033262.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Salehzadeh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fani, A., Varmazyar, S., Akbari, F. et al. Green Synthesis of a Novel PtFe2O4@Ag Nanocomposite: Implications for Cytotoxicity, Gene Expression and Anti-Cancer Studies in Gastric Cancer Cell Line. J Clust Sci 34, 535–546 (2023). https://doi.org/10.1007/s10876-022-02244-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-022-02244-3

Keywords

Navigation