Skip to main content

Advertisement

Log in

Anticancer Drug-Loading Capacity of Green Synthesized Porous Magnetic Iron Nanocarrier and Cytotoxic Effects Against Human Cancer Cell Line

Journal of Cluster Science Aims and scope Submit manuscript

Abstract

Porous hematite α-Fe2O3 nanoparticles (NPs) were synthesized using plant extract. The physicochemical characteristics of resulting porous particles were determined using X-ray diffraction (XRD), Scanning Electron Microscopy (SEM), energy dispersive X-ray (EDS), High-Resolution Transmission Electron Microscopy (HR-TEM), vibrating sample magnetometer (VSM) and N2 adsorption–desorption isotherms (BET) analyses. The cytotoxicity of porous magnetic α-Fe2O3 (PMΑ) NPs, free anticancer drug, and anticancer drug-coated PMΑ NPs was evaluated against melanoma cell line (A375) and normal human cells using MTT and LDH leakage assays. BET results confirmed the presence of porous particles with the mean pore diameter of 18 nm. Porous NPs have spherical surface morphology and rhombohedral crystal structures. It was revealed that both free anticancer drug and anticancer drug-coated PMΑ NPs could inhibit the cell growth in a concentration-dependent manner. However, anticancer drug-loaded PMΑ NPs had better cytotoxic effects against melanoma cell line, evidenced via MTT and LDH leakage assays. Additionally, anticancer drug-loaded PMΑ NPs induced morphological alterations compatible with the occurrence of apoptotic cell death.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. J. Ferlay, et al. (2019). Estimating the global cancer incidence and mortality in GLOBOCAN sources and methods. International Journal of Cancer 144, 1941–1953.

    Article  CAS  PubMed  Google Scholar 

  2. X. Zong, et al. (2021). The N6-methyladenosine RNA-binding protein YTHDF1 modulates the translation of TRAF6 to mediate the intestinal immune response. Nucleic Acids Research 49, 5537–5552. https://doi.org/10.1093/nar/gkab343.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. M. Barani, M. Bilal, A. Rahdar, R. Arshad, A. Kumar, H. Hamishekar, and G. Z. Kyzas (2021). Nanodiagnosis and nanotreatment of colorectal cancer: An overview. Journal of Nanoparticle Research 23, 1–25.

    Article  Google Scholar 

  4. M. Barani, F. Sabir, A. Rahdar, R. Arshad, and G. Z. Kyzas (2020). Nanotreatment and Nanodiagnosis of Prostate Cancer: Recent Updates. Nanomaterials 10, 1696.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. N. Dinita Devi, D. Chyrmang, K. Baidya, and Y. S. Devi (2021). Askin Tumor: A Case Report of a Rare Tumor. International Journal of Scientific Research in Dental and Medical Sciences 3, 153–155.

    Google Scholar 

  6. M. Islam, G. Sultana, R. Khan, A. Islam, H. Mahmud, and S. Raihan (2021). Study on mitochondrial ATPase6 gene polymorphisms as a genetic risk factor for breast cancer in Bangladeshi women. International Journal of Scientific Research in Dental and Medical Sciences 3, 18–22.

    CAS  Google Scholar 

  7. M. Mukhtar, et al. (2020). Nanomaterials for diagnosis and treatment of brain cancer: recent updates. Chemosensors 8, 117.

    Article  CAS  Google Scholar 

  8. M. Haghighat, et al. (2021). Cytotoxicity properties of plant-mediated synthesized K-doped ZnO nanostructures. Bioprocess and Biosystems Engineering 44, 1.

    Google Scholar 

  9. M. Barani, M. Mirzaei, M. Torkzadeh-Mahani, and M. H. Nematollahi (2018). Lawsone-loaded Niosome and its antitumor activity in MCF-7 breast Cancer cell line: a Nano-herbal treatment for Cancer DARU. Journal of Pharmaceutical Sciences. https://doi.org/10.1007/s40199-018-0207-3.

    Article  PubMed  PubMed Central  Google Scholar 

  10. N. J. Wheate, S. Walker, G. E. Craig, and R. Oun (2010). The status of platinum anticancer drugs in the clinic and in clinical trials. Dalton Transactions 39, 8113–8127.

    Article  CAS  PubMed  Google Scholar 

  11. S. Buschauer, A. Koch, P. Wiggermann, M. Müller, and C. Hellerbrand (2018). Hepatocellular carcinoma cells surviving doxorubicin treatment exhibit increased migratory potential and resistance to doxorubicin re-treatment in vitro. Oncology Letters 15, 4635–4640.

    PubMed  PubMed Central  Google Scholar 

  12. M. Susa, A. K. Iyer, K. Ryu, F. J. Hornicek, H. Mankin, M. M. Amiji, and Z. Duan (2009). Doxorubicin loaded polymeric nanoparticulate delivery system to overcome drug resistance in osteosarcoma. BMC Cancer 9, 1–12.

    Article  Google Scholar 

  13. Z. Wang, H. Xiang, P. Dong, T. Zhang, C. Lu, T. Jin, and K. Y. Chai (2021). Pegylated azelaic acid: Synthesis, tyrosinase inhibitory activity, antibacterial activity and cytotoxic studies. Journal of Molecular Structure 1224, 129234.

    Article  CAS  Google Scholar 

  14. Y. Cao, et al. (2021). Ceramic magnetic ferrite nanoribbons: Eco-friendly synthesis and their antifungal and parasiticidal activity. Ceramics International. https://doi.org/10.1016/j.ceramint.2021.10.121.

    Article  Google Scholar 

  15. A. Rahdar, M. Aliahmad, M. Samani, M. HeidariMajd, and M. A. B. H. Susan (2019). Synthesis and characterization of highly efficacious Fe-doped ceria nanoparticles for cytotoxic and antifungal activity. Ceramics International 45, 7950–7955.

    Article  CAS  Google Scholar 

  16. A. Rahdar, S. Rahdar, and G. Labuto (2020). Environmentally friendly synthesis of Fe2O3@ SiO2 nanocomposite: characterization and application as an adsorbent to aniline removal from aqueous solution. Environmental Science and Pollution Research 27, 9181–9191.

    Article  CAS  PubMed  Google Scholar 

  17. A. A. Abdelbary and M. H. AbouGhaly (2015). Design and optimization of topical methotrexate loaded niosomes for enhanced management of psoriasis: application of Box-Behnken design, in-vitro evaluation and in-vivo skin deposition study. International Journal of Pharmaceutics 485, 235–243.

    Article  CAS  PubMed  Google Scholar 

  18. X. Li, Z.-Q. Dong, P. Yu, L.-P. Wang, X.-D. Niu, H. Yamaguchi, and D.-C. Li (2021). Effect of self-assembly on fluorescence in magnetic multiphase flows and its application on the novel detection for COVID-19. Physics of Fluids 33, 042004.

    Article  CAS  PubMed  Google Scholar 

  19. S. Naz, M. Islam, S. Tabassum, N. F. Fernandes, E. J. C. de Blanco, and M. Zia (2019). Green synthesis of hematite (α-Fe2O3) nanoparticles using Rhus punjabensis extract and their biomedical prospect in pathogenic diseases and cancer. Journal of Molecular Structure 1185, 1–7.

    Article  CAS  Google Scholar 

  20. C. Wu, P. Yin, X. Zhu, C. OuYang, and Y. Xie (2006). Synthesis of hematite (α-Fe2O3) nanorods: diameter-size and shape effects on their applications in magnetism, lithium ion battery, and gas sensors. The Journal of Physical Chemistry B 110, 17806–17812.

    Article  CAS  PubMed  Google Scholar 

  21. D. E. Fouad, C. Zhang, T. D. Mekuria, C. Bi, A. A. Zaidi, and A. H. Shah (2019). Effects of sono-assisted modified precipitation on the crystallinity, size, morphology, and catalytic applications of hematite (α-Fe2O3) nanoparticles: a comparative study. Ultrasonics Sonochemistry 59, 104713.

    Article  CAS  PubMed  Google Scholar 

  22. Z. Li, Y. Shi, A. Zhu, Y. Zhao, H. Wang, B. P. Binks, and J. Wang (2021). Light-responsive, reversible emulsification and demulsification of oil-in-water pickering emulsions for catalysis. Angewandte Chemie International Edition 60, 3928–3933.

    Article  CAS  PubMed  Google Scholar 

  23. S. Rahdar, A. Rahdar, S. Ahmadi, M. N. Zafar, L. Mohamadi, G. Labuto, and M. A. Kekha (2020). Removal of sulfonated azo reactive red 198 from water by CeO2 nanoparticles. Environmental Nanotechnology, Monitoring & Management 14, 100384.

    Article  Google Scholar 

  24. S. Rahdar, A. Rahdar, M. Sattari, L. D. Hafshejani, A. K. Tolkou, and G. Z. Kyzas (2021). Barium/cobalt@ polyethylene glycol nanocomposites for dye removal from aqueous solutions. Polymers 13, 1161.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. S. Zhang, et al. (2021). Photocatalytic degradation of oxytetracycline under visible light by nanohybrids of CoFe alloy nanoparticles and nitrogen-/sulfur-codoped mesoporous carbon. Chemical Engineering Journal 1, 130516.

    Article  Google Scholar 

  26. C.-Y. Cao, J. Qu, W.-S. Yan, J.-F. Zhu, Z.-Y. Wu, and W.-G. Song (2012). Low-cost synthesis of flowerlike α-Fe2O3 nanostructures for heavy metal ion removal: adsorption property and mechanism. Langmuir 28, 4573–4579.

    Article  CAS  PubMed  Google Scholar 

  27. L. Tang, et al. (2022). Biological stability of water-based cutting fluids: progress and application. Chinese Journal of Mechanical Engineering 35, 1–10.

    Article  Google Scholar 

  28. T. Gao, et al. (2022). Carbon fiber reinforced polymer in drilling: from damage mechanisms to suppression. Composite Structures 286, 115232.

    Article  Google Scholar 

  29. S. Sargazi, et al. (2021). Synthesis, characterization, toxicity and morphology assessments of newly prepared microemulsion systems for delivery of valproic acid. Journal of Molecular Liquids 338, 116625. https://doi.org/10.1016/j.molliq.2021.116625.

    Article  CAS  Google Scholar 

  30. X. Wang, et al. (2014). Increasing the cytotoxicity of doxorubicin in breast cancer MCF-7 cells with multidrug resistance using a mesoporous silica nanoparticle drug delivery system. International Journal of Clinical and Experimental Pathology 7, 1337–1347.

    PubMed  PubMed Central  Google Scholar 

  31. M. Bazi Alahri, et al. (2021). Theranostic applications of metal–organic frameworks (MOFs)-based materials in brain disorders: Recent advances and challenges. Inorganic, Chemistry Communications 134, 108997. https://doi.org/10.1016/j.inoche.2021.108997.

    Article  CAS  Google Scholar 

  32. S. Salarpour, M. Barani, A. Pardakhty, M. Khatami, and N. Pal Singh Chauhan (2022). The application of exosomes and exosome-nanoparticle in treating brain disorders. Journal of Molecular Liquids. https://doi.org/10.1016/j.molliq.2022.118549.

    Article  Google Scholar 

  33. J. Vaz-Ramos, R. Cordeiro, M. M. C. Castro, C. F. Geraldes, B. F. Costa, H. Faneca, and L. Durães (2020). Supercritically dried superparamagnetic mesoporous silica nanoparticles for cancer theranostics. Materials Science and Engineering: C 115, 111124.

    Article  CAS  PubMed  Google Scholar 

  34. F. Benyettou, et al. (2016). Mesoporous γ-iron oxide nanoparticles for magnetically triggered release of doxorubicin and hyperthermia treatment. Chemistry: A European Journal 22, 17020–17028.

    Article  CAS  PubMed  Google Scholar 

  35. K. Shrimali, J. Jin, B. V. Hassas, X. Wang, and J. D. Miller (2016). The surface state of hematite and its wetting characteristics. Journal of colloid and interface science 477, 16–24.

    Article  CAS  PubMed  Google Scholar 

  36. A. Sanson, O. Mathon, and S. Pascarelli (2014). Local vibrational dynamics of hematite (α-Fe2O3) studied by extended x-ray absorption fine structure and molecular dynamics. The Journal of Chemical Physics 140, 224504.

    Article  CAS  PubMed  Google Scholar 

  37. Y. Xie, et al. (2022). Ameliorating strength-ductility efficiency of graphene nanoplatelet-reinforced aluminum composites via deformation-driven metallurgy. Composites Science and Technology 219, 109225. https://doi.org/10.1016/j.compscitech.2021.109225.

    Article  CAS  Google Scholar 

  38. Q. Zou, P. Xing, L. Wei, and B. Liu (2019). Gene2vec: gene subsequence embedding for prediction of mammalian N6-methyladenosine sites from mRNA. RNA 25, 205–218.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Y. Cao, et al. (2021). Green synthesis of bimetallic ZnO–CuO nanoparticles and their cytotoxicity properties. Scientific Reports 11, 1–8.

    Article  Google Scholar 

  40. M. Khatami, et al. (2020). Calcium carbonate nanowires: greener biosynthesis and their leishmanicidal activity. RSC Advances 10, 38063–38068. https://doi.org/10.1039/D0RA04503A.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. M. Khatami, et al. (2021). Simplification of gold nanoparticle synthesis with low cytotoxicity using a greener approach: opening up new possibilities. RSC Advances 11, 3288–3294. https://doi.org/10.1039/D0RA08822F.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Y. Zhang. (2016). Experimental study on the effect of nanoparticle concentration on the lubricating property of nanofluids for MQL grinding of Ni-based alloy. Journal of Materials Processing Technology 232, 100–115.

    Article  CAS  Google Scholar 

  43. B. Li, et al. (2017). Heat transfer performance of MQL grinding with different nanofluids for Ni-based alloys using vegetable oil. Journal of Cleaner Production 154, 1–11.

    Article  CAS  Google Scholar 

  44. X. Han, Z. Wei, B. Zhang, Y. Li, T. Du, and H. Chen (2021). Crop evapotranspiration prediction by considering dynamic change of crop coefficient and the precipitation effect in back-propagation neural network model. Journal of Hydrology 596, 126104.

    Article  Google Scholar 

  45. F. U. Khan, et al. (2016). Antioxidant and catalytic applications of silver nanoparticles using Dimocarpus longan seed extract as a reducing and stabilizing agent. Journal of Photochemistry and Photobiology B: Biology 164, 344–351. https://doi.org/10.1016/j.jphotobiol.2016.09.042.

    Article  CAS  PubMed  Google Scholar 

  46. M. Niu, Y. Lin, and Q. Zou (2021). sgRNACNN: identifying sgRNA on-target activity in four crops using ensembles of convolutional neural networks. Plant Molecular Biology 105, 483–495.

    Article  CAS  PubMed  Google Scholar 

  47. S. Sun, L. Xu, Q. Zou, and G. Wang (2021). BP4RNAseq: a babysitter package for retrospective and newly generated RNA-seq data analyses using both alignment-based and alignment-free quantification method. Bioinformatics 37, 1319–1321.

    Article  CAS  PubMed  Google Scholar 

  48. S. Azhdari, et al. (2020). Metallic SPIONP/AgNP synthesis using a novel natural source and their antifungal activities. RSC Advances 10, 29737–29744.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. M. Khatami, H. Q. Alijani, B. Fakheri, M. M. Mobasseri, M. Heydarpour, Z. K. Farahani, and A. U. Khan (2019). Super-paramagnetic iron oxide nanoparticles (SPIONs): Greener synthesis using Stevia plant and evaluation of its antioxidant properties. Journal of Cleaner Production 208, 1171–1177. https://doi.org/10.1016/j.jclepro.2018.10.182.

    Article  CAS  Google Scholar 

  50. M. Shi, F. Wang, P. Lan, Y. Zhang, M. Zhang, Y. Yan, and Y. Liu (2021). Effect of ultrasonic intensity on structure and properties of wheat starch-monoglyceride complex and its influence on quality of norther-style. Chinese Steamed Bread LWT 138, 110677.

    CAS  Google Scholar 

  51. Y. Yan, L. Feng, M. Shi, C. Cui, and Y. Liu (2020). Effect of plasma-activated water on the structure and in vitro digestibility of waxy and normal maize starches during heat-moisture treatment. Food chemistry 306, 125589.

    Article  CAS  PubMed  Google Scholar 

  52. N. Zhao, L. Deng, D. Luo, and P. Zhang (2020). One-step fabrication of biomass-derived hierarchically porous carbon/MnO nanosheets composites for symmetric hybrid supercapacitor. Applied Surface Science 526, 146696.

    Article  CAS  Google Scholar 

  53. Y. Wang, et al. (2016). Experimental evaluation of the lubrication properties of the wheel/workpiece interface in MQL grinding with different nanofluids. Tribology International 99, 198–210.

    Article  CAS  Google Scholar 

  54. S. Guo, et al. (2017). Experimental evaluation of the lubrication performance of mixtures of castor oil with other vegetable oils in MQL grinding of nickel-based alloy. Journal of Cleaner Production 140, 1060–1076.

    Article  CAS  Google Scholar 

  55. V. B. Sankapithlu, G. D. Mariyanna, and K. Shankar (2021). Blood indices replace upper gastrointestinal endoscopy for the prediction of clinically significant esophageal varices in liver cirrhosis. International Journal of Scientific Research in Dental and Medical Sciences, 3, 105–110.

    CAS  Google Scholar 

  56. T. Ulasi, C. Nri-Ezedi, O. Ofiaeli, and E. Chijioke (2021). Novel cases of diamond blackfan anaemia in two nigerian toddlers: roadmap for care in resource-limited nations. International Journal of Scientific Research in Dental and Medical Sciences 3, 101–104.

    Google Scholar 

  57. H. Nosrati, M. Salehiabar, S. Davaran, H. Danafar, and H. K. Manjili (2018). Methotrexate-conjugated L-lysine coated iron oxide magnetic nanoparticles for inhibition of MCF-7 breast cancer cells. Drug Development and Industrial Pharmacy 44, 886–894. https://doi.org/10.1080/03639045.2017.1417422.

    Article  CAS  PubMed  Google Scholar 

  58. J. Xu, X. Wang, F. Pan, Y. Qin, J. Xia, J. Li, and F. Wu (2018). Synthesis of the mesoporous carbon-nano-zero-valent iron composite and activation of sulfite for removal of organic pollutants. Chemical Engineering Journal 353, 542–549.

    Article  CAS  Google Scholar 

  59. M. Colilla, B. González, and M. Vallet-Regí (2013). Mesoporous silica nanoparticles for the design of smart delivery nanodevices. Biomaterials Science 1, 114–134.

    Article  CAS  PubMed  Google Scholar 

  60. J. Liu, T. Liu, J. Pan, S. Liu, and G. Lu (2018). Advances in multicompartment mesoporous silica micro/nanoparticles for theranostic applications. Annual Review of Chemical and Biomolecular Eengineering 9, 389–411.

    Article  CAS  Google Scholar 

  61. S. Huang, et al. (2009). Magnetic mesoporous silica spheres for drug targeting and controlled release. The Journal of Physical Chemistry C 113, 1775–1784.

    Article  CAS  Google Scholar 

  62. G. Unsoy, R. Khodadust, S. Yalcin, P. Mutlu, and U. Gunduz (2014). Synthesis of Doxorubicin loaded magnetic chitosan nanoparticles for pH responsive targeted drug delivery. European Journal of Pharmaceutical Sciences 62, 243–250.

    Article  CAS  PubMed  Google Scholar 

  63. N. A. Aval, J. P. Islamian, M. Hatamian, M. Arabfirouzjaei, J. Javadpour, and M.-R. Rashidi (2016). Doxorubicin loaded large-pore mesoporous hydroxyapatite coated superparamagnetic Fe3O4 nanoparticles for cancer treatment. International Journal of Pharmaceutics 509, 159–167.

    Article  Google Scholar 

  64. B. Ahmmad, K. Leonard, M. S. Islam, J. Kurawaki, M. Muruganandham, T. Ohkubo, and Y. Kuroda (2013). Green synthesis of mesoporous hematite (α-Fe2O3) nanoparticles and their photocatalytic activity. Advanced Powder Technology 24, 160–167.

    Article  CAS  Google Scholar 

  65. C. Danpure (1984). Lactate dehydrogenase and cell injury. Cell Biochemistry and Function: Cellular Biochemistry and Its Modulation by Active Agents or Disease 2, 144–148.

    Article  CAS  Google Scholar 

  66. R. Gupta, K. Ghosh, L. Dong, and P. K. Kahol (2010). Green synthesis of hematite (α-Fe2O3) submicron particles. Materials Letters 64, 2132–2134.

    Article  CAS  Google Scholar 

  67. Kumar V, Chahal S, Singh D, Kumar A, Kumar P, Asokan K Annealing effect on the structural and dielectric properties of hematite nanoparticles. In: AIP Conference Proceedings, 2018. vol 1. AIP Publishing LLC, p 030245

  68. M. Qayoom, K. A. Shah, A. H. Pandit, A. Firdous, and G. N. Dar (2020). Dielectric and electrical studies on iron oxide (α-Fe2O3) nanoparticles synthesized by modified solution combustion reaction for microwave applications. Journal of Electroceramics 1, 1–8.

    Google Scholar 

  69. O. Alduhaish, M. Ubaidullah, A. M. Al-Enizi, N. Alhokbany, S. M. Alshehri, and J. Ahmed (2019). Facile Synthesis of Mesoporous α-Fe2O3@ gC 3N4-NCs for Efficient Bifunctional Electro-catalytic Activity (OER/ORR). Scientific Reports 9, 1–10.

    Article  CAS  Google Scholar 

  70. C. E. Soma, C. Dubernet, G. Barratt, S. Benita, and P. Couvreur (2000). Investigation of the role of macrophages on the cytotoxicity of doxorubicin and doxorubicin-loaded nanoparticles on M5076 cells in vitro. Journal of Controlled Release 68, 283–289. https://doi.org/10.1016/S0168-3659(00)00269-8.

    Article  CAS  PubMed  Google Scholar 

  71. S. Azarmi, X. Tao, H. Chen, Z. Wang, W. H. Finlay, R. Löbenberg, and W. H. Roa (2006). Formulation and cytotoxicity of doxorubicin nanoparticles carried by dry powder aerosol particles. International Journal of Pharmaceutics 319, 155–161. https://doi.org/10.1016/j.ijpharm.2006.03.052.

    Article  CAS  PubMed  Google Scholar 

  72. B. Asadishad, M. Vossoughi, and I. Alamzadeh (2010). In vitro release behavior and cytotoxicity of doxorubicin-loaded gold nanoparticles in cancerous cells. Biotechnology Letters 32, 649–654. https://doi.org/10.1007/s10529-010-0208-x.

    Article  CAS  PubMed  Google Scholar 

  73. G. D. Souto, Z. Farhane, A. Casey, E. Efeoglu, J. McIntyre, and H. J. Byrne (2016). Evaluation of cytotoxicity profile and intracellular localisation of doxorubicin-loaded chitosan nanoparticles. Analytical and Bioanalytical Chemistry 408, 5443–5455. https://doi.org/10.1007/s00216-016-9641-6.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Dr Mahmod for analyzing drug loading results.

Author information

Authors and Affiliations

Authors

Contributions

The authors read and approved the final manuscript.

Corresponding author

Correspondence to Saade Abdalkareem Jasim.

Ethics declarations

Conflict of interest

The authors confirm that there are no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ansari, M.J., Jasim, S.A., Taban, T.Z. et al. Anticancer Drug-Loading Capacity of Green Synthesized Porous Magnetic Iron Nanocarrier and Cytotoxic Effects Against Human Cancer Cell Line. J Clust Sci 34, 467–477 (2023). https://doi.org/10.1007/s10876-022-02235-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-022-02235-4

Keywords

Navigation