Skip to main content
Log in

Chitosan Modified Sawdust-Derived Cellulose Nanocrystals as Green Coagulant for Erichrome Black T

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

Cellulose nanocrystals (CNC) obtained from sawdust were modified with chitosan (CHT), as green coagulant (CNC/CHT) for the removal of Erichrome black-T (EBT) dye from aqueous solution. The pristine CNC, CNC/CHT and CNC/CHT-EBT floccules formed after the coagulation process were characterized by different techniques. The diffraction pattern of CNC/CHT showed peaks for both CNC and CHT, therefore, confirmed the co-regeneration of cellulose–chitosan mixing. In addition, the band at 1586 cm−1 found in the infra-red spectrum of this composite, which was attributed to the NH bending of primary amine, and a major functional group of the chitosan, was an indication of the incorporation of chitosan with the CNC. Three different ratios of the CNC:CHT were explored in order to determine the best modification regime for EBT coagulation. Different parameters, including solution pH, coagulant dosage, settling time, initial dye concentration and effect of material ratios were studied. The maximum coagulation of 99.9% was achieved at the optimum pH value of 2.10 using 100 mg/L of EBT concentration. Overall, the performance achieved using the green synthesized CNC/CHT, within the maximum settling time of 30 min, confirmed the efficiency and cost effectiveness of this coagulant for the removal of EBT from water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. M. A. Aly-Eldeen, et al. (2018). The uptake of Eriochrome Black T dye from aqueous solutions utilizing waste activated sludge: adsorption process optimization using factorial design. Egypt. J. Aquat. Res. 44 (3), 179–186.

    Article  Google Scholar 

  2. F. Moeinpour, A. Alimoradi, and M. Kazemi (2014). Efficient removal of Eriochrome black-T from aqueous solution using NiFe2O4 magnetic nanoparticles. J. Environ. Health Sci. Eng. 12 (1), 112–112.

    Article  PubMed  PubMed Central  Google Scholar 

  3. T. S. Kazeem, et al. (2020). Enhanced removal of Eriochrome Black T using graphene/NiMgAl-layered hydroxides: isotherm, kinetic, and thermodynamic studies. Arab. J. Sci. Eng. 45 (9), 7175–7189.

    Article  CAS  Google Scholar 

  4. A. Mittal and V. K. Gupta (2010). Adsorptive removal and recovery of the azo dye Eriochrome Black T. Toxicol. Environ. Chem. 92 (10), 1813–1823.

    Article  CAS  Google Scholar 

  5. P. Franco, et al. (2020). Photocatalytic degradation of Eriochrome Black-T azo dye using Eu-doped ZnO prepared by supercritical antisolvent precipitation route: a preliminary investigation. Top. Catal. 63 (11), 1193–1205.

    Article  CAS  Google Scholar 

  6. S. Kansal, et al. (2013). Photocatalytic degradation of Eriochrome Black T dye using well-crystalline anatase TiO2 nanoparticles. J. Alloys Compds. 581, 392–397.

    Article  CAS  Google Scholar 

  7. D. T. Cestarolli, A. das Graças de Oliveira, and E. M. Guerra (2019). Removal of Eriochrome Black textile dye from aqueous solution by combined electrocoagulation–electroflotation methodology. Appl. Water Sci. 9 (4), 101.

    Article  Google Scholar 

  8. D. Cestarolli, A. Oliveira, and E. Guerra (2019). Removal of Eriochrome Black textile dye from aqueous solution by combined electrocoagulation–electroflotation methodology. Appl Water Sci. https://doi.org/10.1007/s13201-019-0985-x.

    Article  Google Scholar 

  9. P. Cañizares, et al. (2006). Electrochemically assisted coagulation of wastes polluted with Eriochrome Black T. Ind. Eng. Chem. Res. 45 (10), 3474–3480.

    Article  Google Scholar 

  10. H. Ahmad, et al. (2016). Comparison of coagulation, electrocoagulation and biological techniques for the municipal wastewater treatment. Int. J. Appl. Eng. Res. 11, 11014–11024.

    Google Scholar 

  11. A. Nkalane, et al. (2019). Application of coagulant obtained through charge reversal of sawdust-derived cellulose nanocrystals in the enhancement of water turbidity removal. Mater. Res. Express 6 (10), 105060.

    Article  CAS  Google Scholar 

  12. O. A. Oyewo, et al. (2019). Highly efficient removal of nickel and cadmium from water using sawdust-derived cellulose nanocrystals. J. Environ. Chem. Eng. 7 (4), 103251.

    Article  CAS  Google Scholar 

  13. Y.-K. Twu, et al. (2003). Preparation and sorption activity of chitosan/cellulose blend beads. Carbohydr. Polym. 54 (4), 425–430.

    Article  CAS  Google Scholar 

  14. S. Olivera, et al. (2016). Potential applications of cellulose and chitosan nanoparticles/composites in wastewater treatment: a review. Carbohydr. Polym. 153, 600–618.

    Article  CAS  PubMed  Google Scholar 

  15. M. Gibril, et al. (2018). Optimisation and enhancement of crystalline nanocellulose production by ultrasonic pretreatment of dissolving wood pulp fibres. Cellul. Chem. Technol. 52, 9–10.

    Google Scholar 

  16. O. A. Oyewo, et al. (2020). Sawdust-based cellulose nanocrystals incorporated with ZnO nanoparticles as efficient adsorption media in the removal of methylene blue dye. ACS Omega 5 (30), 18798–18807.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. O. A. Oyewo, et al. (2021). Adsorptive and coagulative removal of trace metals from water using surface modified sawdust-based cellulose nanocrystals. J 4 (2), 193.

    CAS  Google Scholar 

  18. J. P. de Mesquita, et al. (2012). Bio-based nanocomposites obtained through covalent linkage between chitosan and cellulose nanocrystals. Carbohydr. Polym. 90 (1), 210–217.

    Article  PubMed  Google Scholar 

  19. C. Z. Thou, et al. (2021). Surface charge on chitosan/cellulose nanowhiskers composite via functionalized and untreated carbon nanotube. Arab. J. Chem. 14 (3), 103022.

    Article  CAS  Google Scholar 

  20. A. Khan, et al. (2012). Mechanical and barrier properties of nanocrystalline cellulose reinfroced chitosan based nanocomposites film. Carbohydr. Polym. 90, 1061–1068.

    Article  Google Scholar 

  21. M. Szymańska-Chargot, et al. (2019). Influence of chitosan addition on the mechanical and antibacterial properties of carrot cellulose nanofibre film. Cellulose 26 (18), 9613–9629.

    Article  Google Scholar 

  22. U. Sampath, et al. (2017). Preparation and characterization of nanocellulose reinforced semi-interpenetrating polymer network of chitosan hydrogel. Cellulose 24, 2215.

    Article  CAS  Google Scholar 

  23. Q. Xu, et al. (2019). Fabrication of cellulose nanocrystal/chitosan hydrogel for controlled drug release. Nanomaterials (Basel) 9 (2), 253.

    Article  CAS  PubMed  Google Scholar 

  24. D. Morgado, et al. (2011). Biobased films prepared from NaOH/thiourea aqueous solution of chitosan and linter cellulose. Cellulose 18, 699–712.

    Article  CAS  Google Scholar 

  25. Y. Jia, et al. (2017). Preparation and characterization of a novel bacterial cellulose/chitosan bio-hydrogel. Nanomater. Nanotechnol. 7, 1847980417707172.

    Article  CAS  Google Scholar 

  26. R. E. Abou-Zeid, et al. (2015). Use of cellulose and oxidized cellulose nanocrystals from olive stones in chitosan bionanocomposites. J. Nanomater. 16, 172.

    Google Scholar 

  27. V. Rubentheren, et al. (2015). Physical and chemical reinforcement of chitosan film using nanocrystalline cellulose and tannic acid. Cellulose 22, 2529.

    Article  CAS  Google Scholar 

  28. K. Ssekatawa, et al. (2021). Isolation and characterization of chitosan from Ugandan edible mushrooms, Nile perch scales and banana weevils for biomedical applications. Sci. Rep. 11 (1), 4116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. P. A. Vinodhini, et al. (2017). FTIR, XRD and DSC studies of nanochitosan, cellulose acetate and polyethylene glycol blend ultrafiltration membranes. Int. J. Biol. Macromol. 104 (Pt B), 1721–1729.

    Article  CAS  PubMed  Google Scholar 

  30. M. K. Kamal, et al. (2018). Synthesis and optimization of novel chitosan/cellulose acetate natural polymer membrane for water treatment. J. Adv. Phys. 14, 5303–5311.

    Article  CAS  Google Scholar 

  31. H. Celebi and A. J. C. P. Kurt (2015). Effects of processing on the properties of chitosan/cellulose nanocrystal films. Carbohydr. Polym. 133, 284–293.

    Article  CAS  PubMed  Google Scholar 

  32. A. Brinkmann, et al. (2016). Correlating cellulose nanocrystal particle size and surface area. Langmuir 32 (24), 6105–6114.

    Article  CAS  PubMed  Google Scholar 

  33. H. Liang, K. Liu, and Y. J. M. L. Ni (2015). Synthesis of mesoporous α-Fe2O3 via sol–gel methods using cellulose nano-crystals (CNC) as template and its photo-catalytic properties. Mater. Lett. 159, 218–220.

    Article  CAS  Google Scholar 

  34. T. Zhang, et al. (2018). Characterization of the nano-cellulose aerogel from mixing CNF and CNC with different ratio. Mater. Lett. 229, 103–106.

    Article  CAS  Google Scholar 

  35. J. Bu, et al. (2019). Enhanced removal of Eriochrome Black T in wastewater by zirconium-based MOF/graphene oxide. Can. J. Chem. 98 (2), 90–97.

    Article  Google Scholar 

  36. H. Balouchi, et al. (2020). Combination of electrocoagulation and MOF adsorption systems for EBT removal from water. Int. J. Environ. Anal. Chem. 2020, 1–11.

    Google Scholar 

  37. J. Yang, et al. (2019). pH-responsive cellulose–chitosan nanocomposite films with slow release of chitosan. Cellulose 26, 3763.

    Article  CAS  Google Scholar 

  38. J. Odiyo, et al. (2017). Coagulation efficiency of Dicerocaryum eriocarpum (DE) plant %. Water SA 43, 1–6.

    Article  CAS  Google Scholar 

  39. N. Precious Sibiya, S. Rathilal, and E. K. Tetteh (2021). Coagulation treatment of wastewater: kinetics and natural coagulant evaluation. Molecules (Basel, Switzerland) 26 (3), 698.

    Article  PubMed  Google Scholar 

  40. K. N. M. Bernard, et al. (2019). Coagulation and sedimentation of concentrated laterite suspensions: comparison of hydrolyzing salts in presence of Grewia spp biopolymer. J. Chem. 2019, 1431694.

    Google Scholar 

  41. Y. Wei, et al. (2015). Characterisation and coagulation performance of an inorganic coagulant: poly-magnesium-silicate-chloride in treatment of simulated dyeing wastewater. Colloids Surf. 470, 137–141.

    Article  CAS  Google Scholar 

  42. Ö. B. Gökçek and S. Özdemir (2020). Optimization of the coagulation-flocculation process for slaughterhouse wastewater using response surface methodology. Clean Soil Air Water 48 (7–8), 2000033.

    Article  Google Scholar 

  43. O. Amuda and A. J. D. Alade (2006). Coagulation/flocculation process in the treatment of abattoir wastewater. Desalination 196 (1–3), 22–31.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the University of Johannesburg under the Global Excellence Stature Fellowship (GES) and North-West University, South Africa for financial support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Opeyemi A. Oyewo or Damian C. Onwudiwe.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oyewo, O.A., Ramaila, S., Mavuru, L. et al. Chitosan Modified Sawdust-Derived Cellulose Nanocrystals as Green Coagulant for Erichrome Black T. J Clust Sci 34, 427–436 (2023). https://doi.org/10.1007/s10876-022-02227-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-022-02227-4

Keywords

Navigation