Skip to main content

Advertisement

Log in

Design and Fabrication of High Performance Photoanode of Fe2(MoO4)3/RGO Hybrid Composites for Triiodide Reduction in Dye-Sensitized Solar Cells

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

Here in, synthesis of Fe2(MoO4)3/reduced graphene oxide (RGO) nanocomposite was prepared by simple hydrothermal approach and used as high efficient dye sensitized solar cells (DSSCs). The decoration of RGO into the Fe2(MoO4)3 was proved by various physic-chemical studies such as XRD, SEM, TEM, Raman, UV, PL and BET analysis. The individual spherical shaped nanoparticles of Fe2(MoO4)3 with sizes in the range of 25–35 nm was uniformly decorated on the surface of RGO nanosheets. Due to the synergic effect between the Fe2(MoO4)3 and RGO the light absorption property is significantly improved as well the high surface area (112.5 m2/g) and pore size (38.7 nm) was achieved than compared with bare Fe2(MoO4)3 (88.5 m2/g and 17.8 nm). The Fe2(MoO4)3/RGO hybrid photoanode establish to display an outstanding catalytic activity toward the reduction of triiodide to iodide in a dye-sensitized solar cell (DSSC) and can provide a solar cell efficiency of 9.6 ± 0.001%, which is superior to a Pt-based DSSC (6.1 ± 0.002%). The better electro-catalytic ability of Fe2(MoO4)3/RGO electrode is obtained by a synergistic effect that resulted in the high specific surface area and intrinsic reactivity of the materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. I. Ahmad, U. Khan, and Y. K. Gunko (2011). J. Mater. Chem. 21, 16990.

    Article  CAS  Google Scholar 

  2. S. Ahmad, E. Guillén, L. Kavan, M. Grätzel, and M. K. Nazeeruddin (2013). Energy Environ. Sci. 6, 3439.

    Article  CAS  Google Scholar 

  3. Y. Chiba, A. Islam, Y. Watanabe, R. Komiya, and N. Koide (2006). Jpn. J. Appl. Phys. Part 2 (45), 24.

    Google Scholar 

  4. M. K. Nazeeruddin, P. Pechy, and M. Grätzel (1997). Chem. Commun. 18, 1705.

    Article  Google Scholar 

  5. M. Grätzel (2001). Nature. 414, 338.

    Article  PubMed  Google Scholar 

  6. Y. Wu, J. Zhang, L. Xiao, and F. Chen (2010). Appl. Surf. Sci 256, 4260.

    Article  CAS  Google Scholar 

  7. Y. Haldorai, A. Rengaraj, C. H. Kwak, Y. S. Huh, and Y.-K. Han (2014). Synth. Met. 198, 10.

    Article  CAS  Google Scholar 

  8. W. Fan, Q. Lai, Q. Zhang, and Y. Wang (2011). J. Phys. Chem. C. 115, 10694.

    Article  CAS  Google Scholar 

  9. A. A. Ismail, R. A. Geioushy, H. Bouzid, S. A. Al-Sayari, A. Al-Hajry, and D. W. Bahnemann (2013). Appl. Catal. B 129, 62.

    Article  CAS  Google Scholar 

  10. R. Raja, M. Govindaraj, M. D. Antony, K. Krishnan, V. Eswaramoorthi, A. Sambandam, et al. (2017). J. Solid State Electrochem 21, 891.

    Article  CAS  Google Scholar 

  11. K. Qureshi, M. Z. Ahmad, I. A. Bhatti, M. Zahid, J. Nisar, and M. Iqbal (2019). J. Mol. Liq. 285, 778.

    Article  CAS  Google Scholar 

  12. M. Arshad, A. Qayyum, G. Abbas, R. Haider, M. Iqbal, and A. Nazir (2018). J. Mol. Liq. 260, 272.

    Article  CAS  Google Scholar 

  13. M. Irandost, R. Akbarzadeh, M. Pirsaheb, A. Asadi, P. Mohammadi, and M. Sillanpää (2019). J. Mol. Liq. 291, 111342.

    Article  CAS  Google Scholar 

  14. J. Mishra, D. S. Pattanayak, A. A. Das, D. K. Mishra, D. Rath, and N. K. Sahoo (2019). J. Mol. Liq. 287, 110821.

    Article  CAS  Google Scholar 

  15. W. Xiao, J. S. Chen, C. M. Li, R. Xu, and X. W. Lou (2009). Chem. Mater. 22, 746.

    Article  Google Scholar 

  16. P. Gao, Y. Xie, L. Ye, Y. Chen, and Z. Li (2005). Chem. Lett. 35, 162.

    Article  Google Scholar 

  17. R. Packiaraj, P. Devendran, K. Venkatesh, A. Manikandan, and N. Nallamuthu (2019). J. Superconduct. Novel Magnet. 32, 2427.

    Article  CAS  Google Scholar 

  18. K. Seevakan, A. Manikandan, P. Devendran, A. Baykal, and T. Alagesan (2018). Ceram. Int. 44, 17735.

    Article  CAS  Google Scholar 

  19. H. Veisi, J. Gholami, H. Ueda, P. Mohammad, and M. Noroozi (2015). J. Mol. Catal. A 396, 216.

    Article  CAS  Google Scholar 

  20. K. Otsuka, Y. Wang, I. Yamanaka, and A. Morikawa (1993). J. Chem. Soc. Faraday Trans. 89, 4225.

    Article  CAS  Google Scholar 

  21. E. Tronconi, P. Forzatti, J. Martin, and S. Mallogi (1992). Chem. Eng. Sci. 47, 2401.

    Article  CAS  Google Scholar 

  22. H. Jung, J. Hassoun, J. Park, Y. Sun, and B. Scrosati (2012). Nature 4, 579.

    CAS  Google Scholar 

  23. C. Gao, Z. Lin, N. Li, P. Fu, and X. Wang (2015). Acta Metall Sin. Engl. 28, 1190.

    Article  CAS  Google Scholar 

  24. A. Chychko, L. Teng, M. Nzotta, and S. Seetharaman (2011). Steel Res. Int. 82, 269.

    Article  CAS  Google Scholar 

  25. Xintong Liu, Youyi Zhu, Wenjun Li, Fangzhi Wang, Hongda Li, Chaojun Ren, and Yanjun Zhao (2017). Mol Catal. 434, 106.

    Article  CAS  Google Scholar 

  26. Y. H. Jung, C. H. Lim, and D. K. Kim (2013). J. Mater. Chem. A 1, 11350.

    Article  CAS  Google Scholar 

  27. M. Parthibavarman, S. Sathishkumar, and S. Prabhakaran (2018). J. Mater. Sci. Mater. Electron. 29, 2341.

    Article  CAS  Google Scholar 

  28. M. Parthibavarman, S. Sathishkumar, S. Prabhakaran, M. Jayashree, and R. BoopathiRaja (2018). J. Iran. Chem. Soc. 15, 2789.

    Article  CAS  Google Scholar 

  29. M. Parthibavarman, K. Vallalperuman, S. Sathishkumar, M. Durairaj, and K. Thavamani (2014). J. Mater. Sci. Mater. Electron. 25, 730.

    Article  CAS  Google Scholar 

  30. M. Parthibavarman, M. Karthik, P. Sathishkumar, and R. Poonguzhali (2018). Rapid synthesis of novel Cr-doped WO3 nanorods: an efficient electrochemical and photocatalytic performance. J. Iran. Chem. Soc. 15, 1419.

    Article  CAS  Google Scholar 

  31. R. BoopathiRaja and M. Parthibavarman (2019). J. Alloys Compd. 811, 152084.

    Article  CAS  Google Scholar 

  32. R. Boopathi Raja, M. Parthibavarman, and A. Nishara Begum (2019). Vacuum. 165, 96.

    Article  CAS  Google Scholar 

  33. X. Liu, Y. Zhub, W. Li, F. Wang, H. Li, C. Ren, and Y. Zhao (2017). Mol Catal 434, 106.

    Article  CAS  Google Scholar 

  34. M. Durairasan, P. S. Karthik, J. Balaji, and B. Rajeshkanna (2020). Diamond Relat. Mater. 12, 108174.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Siva Karthik.

Ethics declarations

Conflict of interest

Author declares that there is no conflict of interest in this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thulasi, S., Arunprasad, V., Karthik, P.S. et al. Design and Fabrication of High Performance Photoanode of Fe2(MoO4)3/RGO Hybrid Composites for Triiodide Reduction in Dye-Sensitized Solar Cells. J Clust Sci 34, 349–357 (2023). https://doi.org/10.1007/s10876-021-02216-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-021-02216-z

Keywords

Navigation