Skip to main content

Advertisement

Log in

Anti-Colon Cancer and Antibiofilm Activities of Green Synthesized ZnO Nanoparticles Using Natural Polysaccharide Almond Gum (Prunus dulcis)

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

Two of the main challenges in medicine are the fight against antibiotic resistance and cancer, and nowadays, nanomaterials are being postulated as potential alternatives to traditional treatments. Particularly, metal oxide nanoparticles could be an attractive option to replace conventional drugs, which generally present undesirable side effects. Besides, the green synthesis of the NPs provides several advantages, including less contamination. Hence, the present study described a sustainable and simple synthesis of zinc oxide NPs using almond gum Prunus dulcis (Alg-ZnONPs) as the capping agent. The Alg-ZnONPs showed significantly efficient antibacterial and antibiofilm activities against Staphylococcus aureus and Proteus vulgaris. The MIC values of Alg-ZnONPs were 3.25 µg/ml against S. aureus and 2.12 µg/ml against P. vulgaris, which confirm their significant antibacterial activity. Furthermore, the antibiofilm activity against both bacteria was evaluated, disclosing the inhibition of the biofilm growth at 100 μg/ml. Additionally, in vitro anti-colon cancer activity of the Alg-ZnONPs was assessed on a human colon cancer cell line (HT-29), resulting in a significant reduction of the cell proliferation in 24 h, with an IC50 of 30.69 µg/ml. The present work validates a straightforward and green synthesis of ZnONPs and unravels their potential for developing new antibiofilm agents and anti-colon cancer therapeutics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. V. Kandi and S. Kandi (2015). Epide. Health. 37, 2015020.

    Article  Google Scholar 

  2. M. A. Ansari, M. Murali, D. Prasad, M. A. Alzohairy, A. Almatroudi, M. N. Alomary, A. C. Udayashankar, S. B. Singh, S. M. M. Asiri, B. S. Ashwini, H. G. Gowtham, N. Kalegowda, K. N. Amruthesh, T. R. Lakshmeesha, and S. R. Niranjana (2020). Biomol 10, 336.

    CAS  Google Scholar 

  3. S. O. Samuel, O. O. Kayode, O. I. Musa, G. C. Nwigwe, A. O. Aboderin, T. A. T. Salami, and S. Taiwo (2010). Afr. J. Clin. Exp. Microbiol. 11, 102–110.

    Google Scholar 

  4. W. P. Liu, Y. Q. Tian, Y. T. Hai, Z. N. Zheng, and Q. L. Cao (2015). J. Thorac. Dis. 7, 1650–1657.

    PubMed  PubMed Central  Google Scholar 

  5. P. S. Stewart and J. William Costerton (2001). Lancet 358, 135–138.

    Article  CAS  PubMed  Google Scholar 

  6. N. Høiby, O. Ciofu, H. K. Johansen, Z. Song, C. Moser, P. Ø. Jensen, P. ØstrupJensen, S. Molin, M. Givskov, T. Tolker-Nielsen, and T. Bjarnsholt (2011). Int. J. Oral Sci. 3, 55–65.

    Article  PubMed  PubMed Central  Google Scholar 

  7. M. H. Sangani, M. N. Moghaddam, and M. M. Forghanifard (2015). Nanomed. J. 2, 121–128.

    Google Scholar 

  8. J. P. O’Gara and H. Humphreys (2001). J. Med. Microbiol. 50, 582–587.

    Article  PubMed  Google Scholar 

  9. C. Ashajyothi, V. Handral Harish, N. Dubey, and R. Chandrakanth (2016). J. Nanostruct. Chem. 6, 329–341.

    Article  CAS  Google Scholar 

  10. K. H. Lee, S. J. Park, S. J. Choi, and J. Y. Park (2017). J. YMJ 58, 1135–1143.

    CAS  Google Scholar 

  11. D. Raafat, M. Otto, K. Reppschl¨ager, J. Iqbal and S. Holtfreter (2019). Trends Microbiol, 27, 303–322.

  12. Y. Guo, G. Song, M. Sun, J. Wang, and Y. Wang (2020). Front. Cell. Infect. Microbiol. 10, 107.

    Article  PubMed  PubMed Central  Google Scholar 

  13. S. Y. Tong, J. S. Davis, E. Eichenberger, T. L. Holland, and V. G. Fowler (2015). Clin. Microbiol. Rev. 28, 603–661.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. S. Bilal, S. Anam, T. Mahmood, R. M. Abdullah, S. Nisar, F. Kalsoom, M. Luqman, and F. R. Anjum (2019). Pak. J. Pharm. Sci. 32, 2887–2891.

    CAS  PubMed  Google Scholar 

  15. L. Sun, Y. Sun, M. Jiang, L. Luo, X. Yu, W. Yao, and Z. Wu (2020). Aqua 29, 735294.

    Article  Google Scholar 

  16. V. Zappa, C.A.D. Bola˜nos, C.L. De Paula, J.L.R. Callefe, A.C. Alves, A.B.C. De Morais, S.T. Guerra, M.C. Cabrini, P.A. Melville and M.G. Ribeiro (2017). Semina: CiˆenciasAgr´arias, 38,775–789.

  17. A. S. Al-Kharashi, A. S. Al-Kharshi, and Y. H. Al-Faky (2017). Middle East Afr. J. Ophthalmol. 24, 116–118.

    Article  PubMed  PubMed Central  Google Scholar 

  18. K. Myszka, K. Czaczyk, M. T. Schmidt, and A. M. Olejnik (2017). World J. Microbiol. Biotechnol. 23, 1605–1612.

    Article  Google Scholar 

  19. R. L. Siegel, K. D. Miller, and A. Jemal (2020). CA: A Cancer J. Clinic 70, 7–30.

    Google Scholar 

  20. F. X. Gu, R. Karnik, A. Z. Wang, F. Alexis, E. Levy-Nissenbaum, and S. Hong (2002). Nano Today 2, 14–21.

    Article  Google Scholar 

  21. J. H. Maeng, D. H. Lee, and K. H. Jung (2010). Biomat 31, 4995–5006.

    Article  CAS  Google Scholar 

  22. E. N. Zare, R. Jamaledin, P. Naserzadeh, E. Afjeh-Dana, B. Ashtari, M. Hosseinzadeh, R. Vecchione, A. Wu, F. R. Tay, A. Borzacchiello, and P. Makvandi (2020). ACS Appl. Mater. Int. 12, 3279–3300.

    Article  CAS  Google Scholar 

  23. P. Yugandhar, T. Vasavi, P. U. M. Devi, and N. Savithramma (2017). Appl. Nanosci. 7, 417–427.

    Article  CAS  Google Scholar 

  24. G. Sharmila, S. Haries, M. Farzana Fathima, S. Geetha, N. Manoj Kumar, and C. Muthukumaran (2017). Powder Technol. 320, 22–26.

    Article  CAS  Google Scholar 

  25. K. Steffy, G. Shanthi, A. S. Maroky, and S. Selvakumar (2018). J. Adv. Res. 9, 69–77.

    Article  CAS  PubMed  Google Scholar 

  26. D. T. Rheder, M. Guilger, N. Bilesky-José, T. Germano-Costa, T. Pasquoto-Stigliani, T. B. B. Gallep, and R. Lima (2018). Sci. Rep. 8, 1–11.

    Article  CAS  Google Scholar 

  27. H. Agarwal, S. Menon, S. Venkat Kumar, and S. Rajeshkumar (2018). Chem. Biol. Interact 286, 60–70.

    Article  CAS  Google Scholar 

  28. S. Ambika and M. Sundrarajan (2015). J. Photochem. Photobiol. B 149, 143–148.

    Article  CAS  PubMed  Google Scholar 

  29. P. Makvandi, G. W. Ali, F. Della Sala, W. I. Abdel-Fattah, and A. Borzacchiello (2019). Mater. Sci. Eng. C 107, 10195.

    Google Scholar 

  30. T. Nalini, S. K. Basha, A. M. M. Sadiq, V. S. Kumari, and K. Kaviyarasu (2019). J. Drug Delivery Sci. Technol. 52, 65–72.

    Article  CAS  Google Scholar 

  31. S. TaghaviFardood, A. Ramazani, Z. Golfar, and S. Woo Joo (2017). Appl. Organometal. Chem. 56, 3823.

    Article  Google Scholar 

  32. E. N. Zare, P. Makvandi, A. Borzacchiello, F. R. Tay, B. Ashtari, and V. P. V. Thekkae (2019). Chem. Commun. 55, 14871–14885.

    Article  Google Scholar 

  33. F. Bouaziz, M. Koubaa, C. B. Helbert, F. Kallel, D. Driss, I. Kacem, R. Ghorbel, and S. E. Chaabouni (2015). Int. J. Food Sci. Technol. 50, 578–584.

    Article  CAS  Google Scholar 

  34. X.-C. Yao, Y. Cao, and S.-J. Wu (2013). Int. J. Biol. Macromol. 62, 1–3.

    Article  PubMed  Google Scholar 

  35. G. Mandalari, C. Nueno-Palop, G. Bisignano, M. S. J. Wickham, and A. Narbad (2008). Appl. Environ. Microbiol. 74, 4264–4270.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. N. Mahfoudhi, M. Sessa, M. Chouaibi, G. Ferrari, F. Donsì, and S. Hamdi (2014). Food Hydrocoll. 37, 49–59.

    Article  CAS  Google Scholar 

  37. N. Mahfoudhi, M. Chouaibi, F. Donsì, G. Ferrari, and S. Hamdi (2012). Food Sci. Technol. Int. 18, 241–250.

    Article  CAS  PubMed  Google Scholar 

  38. K. Mittal, Y. Chisti, and U. C. Banerjee (2013). Biotechnol. Adv. 31, 346–356.

    Article  CAS  PubMed  Google Scholar 

  39. Z. L. Wang and J. Song (2006). Science 312, 242–246.

    Article  CAS  PubMed  Google Scholar 

  40. R. S. Devan, R. A. Patil, J.-H. Lin, and Y.-R. Ma (2012). Adv. Funct. Mater. 22, 3326–3370.

    Article  CAS  Google Scholar 

  41. J. N. Schrauben, R. Hayoun, C. N. Valdez, M. Braten, L. Fridley, and J. M. Mayer (2012). Science 336, 1298–1301.

    Article  CAS  PubMed  Google Scholar 

  42. P. Sharma, J. B. Shin, B. C. Park, J.-W. Lee, S. W. Byun, N.-Y. Jang, Y. J. Kim, Y. Kim, Y. K. Kim, and N.-H. Cho (2019). Nanoscale 11, 4591–4600.

    Article  CAS  PubMed  Google Scholar 

  43. M. T. Khorasani, A. Joorabloo, H. Adeli, Z. M. Moghadam, and A. Moghaddam (2019). Carbohydr. Polym. 207, 542–554.

    Article  CAS  PubMed  Google Scholar 

  44. E. Proniewicza, A. Tąta, M. Starowicz, A. Wojcik, J. Pacek, and M. Molenda (2021). Colloids Surf, A Physicochem. Eng. Asp 609, 125771.

    Article  CAS  Google Scholar 

  45. H.-M. Xiong (2013). Adv. Mater. 25, 5329–5335.

    Article  CAS  PubMed  Google Scholar 

  46. M. M. Alvesa, S. M. Andrade, L. Grenho, M. H. Fernandes, C. Santos, and M. F. Montemor (2019). Mater. Sci. Eng. C-Mater. Biol. Appl. 101, 76–87.

    Article  Google Scholar 

  47. G. Theophil Anand, D. Renuka, R. Ramesh, L. Anandaraj, S. John Sundaram, G. Ramalingam, C. Maria Magdalane, A. K. H. Bashir, M. Maaza, and K. Kaviyarasu (2019). Surf. Inter. 17, 100376.

    CAS  Google Scholar 

  48. R. Pandimurugan and S. Thambidurai (2016). Adv. Powder Technol. 27, 1062–1072.

    Article  CAS  Google Scholar 

  49. S. Vijayakumar, K. Saravanakumar, B. Malaikozhundan, M. Divya, B. Vaseeharan, E. F. Durán-Lara, and M. H. Wang (2020). Int. J. Biol. Mol. 144, 9–18.

    CAS  Google Scholar 

  50. CLSI 2018. M100: Performance Standards for Antimicrobial Susceptibility Testing.Twenty-eighth informational supplement Wayne. P.A. Clinical and LaboratoryStandards Institute.

  51. M. Divya, B. Vaseeharan, M. Abinaya, S. Vijayakumar, M. Govindarajan, N. S. Alharbi, and G. Benelli (2018). J. PhotochemPhotobiol B 178, 211–218.

    Article  CAS  Google Scholar 

  52. M. Divya, M. Govindarajan, S. Karthikeyan, E. Preetham, N. S. Alharbi, S. Kadaikunnan, J. M. Khaled, T. N. Almana, and B. Vaseeharan (2020). Microbial. Pathogen 141, 103992.

    Article  CAS  Google Scholar 

  53. A. Umamaheswari, S. Lakshmana Prabu, S. Adharsh John, and A. Puratchikody (2021). Biotechnol. Rep. 29, 00595.

    Google Scholar 

  54. S. Vijayakumar, M. Divya, B. Vaseeharan, S. Ranjan, V. Kalaiselvi, N. Dasgupta, J. Chen, and E. F. Durán-Lara (2021). J. Cluster Sci. 32, 983–993.

    Article  CAS  Google Scholar 

  55. P. Basnet, T. I. Chanu, D. Samanta, and S. Chatterjee (2018). J. Photochem. Photobiol. B 183, 201–221.

    Article  CAS  PubMed  Google Scholar 

  56. A. A. Barzinjy, S. M. Hamad, A. F. Abdulrahman, S. J. Biro, and A. A. Ghafor (2020). Curr. Org. Synth 17, 558–566.

    Article  CAS  PubMed  Google Scholar 

  57. S. Alamdari, M. Sasani Ghamsari, C. Lee, W. Han, H. H. Park, M. J. Tafreshi, and M. H. M. Ara (2020). Appl. Sci. 10, 3620.

    Article  CAS  Google Scholar 

  58. M. Sundrarajan, S. Ambika, and K. Bharathi (2015). Adv. Powder Technol. 26, 1294–1299.

    Article  CAS  Google Scholar 

  59. W. Muhammad, N. Ullah, M. Haroon, and B. H. Abbasi (2019). RSC Adv. 9, 29541–29548.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. R. Resmi, Jumna Yoonus, and B. Beena (2021). Mater. Today: Proc 46, 3062–3068.

    CAS  Google Scholar 

  61. S. Y. Han, M. S. Akhtar, I. Jung, and O.-B. Yang (2018). Mater. Lett. 230, 92–95.

    Article  CAS  Google Scholar 

  62. M. Bashir and S. Haripriya (2016). Int. J. Biol. Macromol. 93, 476–482.

    Article  CAS  PubMed  Google Scholar 

  63. P. Sutradhar and M. Saha (2015). J. Exp. Nanosci. 45, 125–133.

    Google Scholar 

  64. U. K. Panigrahi, B. Sahu, H. G. Behuria, S. K. Sahu, S. P. Dhal, S. Hussain, and P. Mallick (2021). Nano Express 2, 010012.

    Article  Google Scholar 

  65. S. Pitchaiya, N. Eswaramoorthy, M. Natarajan, A. Santhanam, V. Madurai Ramakrishnan, V. Asokan, P. Palanichamy, B. Palanisamy, A. Kalimuthu, and D. Velauthapillai (2020). New J. Chem 44, 8422–8433.

    Article  CAS  Google Scholar 

  66. G. Unni, V. N. Vineeth, G. S. Anjushree, S. Vadukumpully, V. P. Mahadevan Pillai, A. Sreekumaran Nair, and S. Suresh (2020). J. Electron. Mater. 49, 3290–3300.

    Article  CAS  Google Scholar 

  67. E. Gurgur, S. S. Oluyamo, A. O. Adetuyi, O. I. Omotunde, and A. E. Okoronkwo (2020). SN Appl. Sci. 2, 911.

    Article  CAS  Google Scholar 

  68. A. Kołodziejczak-Radzimska, E. Markiewicz, and T. Jesionowski (2012). J. Nanomater. 2012, 656353.

    Article  Google Scholar 

  69. P. C. Nagajyothi, S. J. Cha, I. J. Yang, T. V. M. Sreekanth, K. J. Kim, and H. M. Shin (2015). J. Photochem. Photobiol, B 146, 10–17.

    Article  CAS  PubMed  Google Scholar 

  70. R. G. Packirisamy (2019). Int. J. Biol. Macromol 138, 546–555.

    Article  CAS  PubMed  Google Scholar 

  71. S. Vijayakumar, Z.I. González-Sánchez, B. Malaikozhundan, K. Saravanakumar, M. Divya, B. Vaseeharan, E.F. Durán-Lara and M.H. Wang (2020). J. Cluster Sci.

  72. S. R. Shah, A. M. Tatara, R. N. D’Souza, A. G. Mikos, and F. K. Kasper (2013). Mater. Today 16, 177–182.

    Article  CAS  Google Scholar 

  73. H. Watson (2015). Essays Biochem. 59, 43–69.

    Article  PubMed  PubMed Central  Google Scholar 

  74. A. Sirelkhatim, S. Mahmud, A. Seeni, N. H. M. Kaus, L. C. Ann, S. K. M. Bakhori, H. Hasan, and D. Mohamad (2015). Nano-Micro Lett. 7, 219–242.

    Article  CAS  Google Scholar 

  75. W. Shaib, R. Mahajan, and B. El-Rayes (2013). Gastrointest. Oncol. 4, 308–318.

    CAS  Google Scholar 

  76. S. Bovandi, M. Shahriari and M.M. Zangeneh (2020). Research Square, 1– 22. https://doi.org/10.21203/rs.3.rs-49606/v1.

  77. S. Ghosh, R. Nitnavare, A. Dewle, G. B. Tomar, R. Chippalkatti, P. More, R. Kitture, S. Kale, J. Bellare, and B. A. Chopade (2015). Int. J. Nanomed 10, 7477–7490.

    CAS  Google Scholar 

  78. K. Bai, B. Hong, J. He, Z. Hong, and R. Tan (2017). Int. J. Nanomed. 12, 4527–4539.

    Article  CAS  Google Scholar 

  79. S. Majeed, M. Danish, M. H. Bin Ismail, M. T. Ansari, and M. N. M. Ibrahim (2019). Sustain. Chem. Pharm. 14, 100179.

    Article  Google Scholar 

  80. F. Namvar, H. S. Rahman, R. Mohamad, S. Azizi, P. M. Tahir, M. S. Chartrand, and S. K. Yeap (2015). Altern. Med. 2015, 593014.

    Google Scholar 

Download references

Acknowledgements

The First author Dr. Sekar Vijayakumar thank Shandong University for providing the opportunity for a post-doctoral fellowship. This work was supported by ANID FONDECYT REGULAR (Chile) through project No: 1210476 from Prof. Esteban F. Durán-Lara. The authors Dr. M.D & Prof. B.V thank the RUSA phase 2.0 Grant (Ref-24–51/2014-U, policy) TN. Multi- Gen, Department of Education, Government of India.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sekar Vijayakumar or Jingdi Chen.

Ethics declarations

Conflict of interest

The authors declare that no conflict of this present study. All authors approved the final version of this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 4396 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vijayakumar, S., Chen, J., González-Sánchez, Z.I. et al. Anti-Colon Cancer and Antibiofilm Activities of Green Synthesized ZnO Nanoparticles Using Natural Polysaccharide Almond Gum (Prunus dulcis). J Clust Sci 34, 165–176 (2023). https://doi.org/10.1007/s10876-021-02205-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-021-02205-2

Keywords

Navigation