Skip to main content
Log in

Ferromagnetism in Undoped ZnS and Fe Doped ZnS Quantum Dots Synthesized using Polyethylene Glycol

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

ZnS and Fe doped ZnS quantum dots were synthesized by homogeneous chemical co-precipitation method using polyethylene glycol as a capping agent. The structural, optical, and magnetic properties of synthesized quantum dots were investigated using x-ray diffraction, transmission electron microscopy, fourier transform infrared spectroscopy, ultraviolet–visible absorption spectroscopy, x-ray photoelectron spectroscopy, and photoluminescence spectroscopy. The x-ray diffraction analysis confirmed the single-phase nature of the nanoparticles with the zinc-blend crystal structure. The average crystallite size was found to decrease with Fe dopant while the lattice constant increased. The mean particle size from the transmission electron microscopy image is found to decrease from 14.7 to 4.4 nm. The ultraviolet–visible absorption spectra shows the blue shift in the bandgap (5.0–5.96 eV) due to the quantum confinement effect. Fourier transform infrared spectra confirmed the formation of zinc sulfide and the substitution of Fe ion in it. The photoluminescence spectra reveal the shift from ultraviolet to violet emission. The vibrating sample magnetometer results depict that the zinc sulfide and Fe-doped zinc sulfides are ferromagnetic. Electron paramagnetic resonance spectrum also confirmed the ferromagnetic nature of zinc sulfide and Fe-doped zinc sulfide samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. B. Y. Geng, X. W. Liu, Q. B. Du, X. W. Wei, and L. D. Zhang (2006). Appl. Phys. Lett. 88, 163104.

    Article  Google Scholar 

  2. T. Yamamoto, S. Kishimoto, and S. Iida (2001). Physica B: Condens. Matter. 308, 916–919.

    Article  Google Scholar 

  3. M. Bass, C. M. De Cusatis, J. M. Enoch, V. Lakshminarayanan, G. Li, C. Mac Donald, V. N. Mahajan, and E.V. Stryland, Handbook of Optics, vol. 1, chap. 14, 3rd ed. (McGraw-Hill, New York, 2009).

  4. X. S. Fang, L. M. Wu, and L. F. Hu (2011). Adv. Mater. 23, 585–598.

    Article  CAS  PubMed  Google Scholar 

  5. M. Wu, Z. Wei, W. Zhao, X. Wang, and J. Jiang (2017). J. Nanomater. 2017, 1603450.

  6. T. Akilan, N. Srinivasan, R. Saravanan, and P. Chowdury (2014). Mater. Manuf. Processes. 29, 780–788.

    Article  CAS  Google Scholar 

  7. J. F. Xu, W. Ji, J. Y. Lin, S. H. Tang, and Y. W. Du (1998). Appl. Phys. A 66, 639–641.

    Article  CAS  Google Scholar 

  8. P. Balaz, P. Pourghahramani, E. Dutkova, E. Turianicova, J. Kovac, and A. Satka (2008). Phys. Status Solidi C 5, 3756–3758.

    Article  CAS  Google Scholar 

  9. M. W. Wang, L. D. Sun, C. H. Liu, C. S. Liao, C. H. Yan, and Chin (1999). J. Lumin. 20, 247.

    CAS  Google Scholar 

  10. L. X. Cao, J. H. Zhang, S. L. Ren, and S. H. Huang (2002). Appl. Phys. Lett. 80, 4300.

    Article  CAS  Google Scholar 

  11. Y. Tong, Z. Jiang, C. Wang, Y. Xin, Z. Huang, S. Liu, and C. Li (2008). Mater. Lett. 62, 3385–3387.

    Article  CAS  Google Scholar 

  12. Q. H. TranThi, N. D. The, S. M. Vitie, N. Nguyen Hoang, V. Le Van, T. D. Canh, and N. N. Long (2011). Opt. Mater. 33, 308–314.

    Article  Google Scholar 

  13. R. Yousefi and A. K. Zak (2011). Mater. Sci. Semicond. Process. 14, 170–174.

    Article  CAS  Google Scholar 

  14. Z. Zhang, Y. Miao, Q. Zhang, and G. Yan (2015). Anal. Biochem. 478, 90–95.

    Article  CAS  PubMed  Google Scholar 

  15. N. Murase, R. Jagannathar, Y. Kanematsu, M. Watanable, A. Kurita, K. Hirata, T. Yazawa, and T. Kushida (1999). J. Phys. Chem. B 103, 754–760.

    Article  CAS  Google Scholar 

  16. D. Jiang, L. Cao, S. Ge, Q. Hua, and D. Sun (2007). Appl. Surf. Sci. 253, 9330–9335.

    Article  CAS  Google Scholar 

  17. Virpal, A. Hastir, N. Kohli, J. Kaur, A. Kaur, J. Singh, S. Sharma, and R. C. Singh (2017). Int. J. Sci. Eng. Res. 8, 2229–5518.

    Google Scholar 

  18. S. Kumar and N. K. Verma (2015). J. Mater. Sci.: Mater. Electron. 26, 2754–2759.

    CAS  Google Scholar 

  19. B. Poornaprakash, U. Chalapathi, and S. V. P. Vattikuti (2017). Appl. Phys. A 123, 275.

    Article  Google Scholar 

  20. M. S. Akhtar, S. Riaz, S. S. Hussain, and S. Naseem, The 2014 world congress on Advances in civil, environmental and materials research (ACEM 14), Busan, Korea (2014).

  21. D. Saikia, R. D. Ral, and J. P. Borah (2016). Physica E: Low Dimens. Syst. Nanostruct. 83, 56–63.

    Article  CAS  Google Scholar 

  22. S. Ghorai, N. Patra, A. Pal, D. Bhattacharyya, S. N. Jha, B. Ray, S. Chatterjee, and A. K. Ghosh (2019). J. Alloys Compd. 805, 363–378.

    Article  CAS  Google Scholar 

  23. M. S. Akhtar, M. A. Malik, Y. G. Alghamdi, K. S. Ahmad, S. Riaz, and S. Naseem (2015). Mater. Sci. Semicond. Process. 39, 283–291.

    Article  CAS  Google Scholar 

  24. B. Poornaprakash, D. A. Reddy, G. Murali, R. P. Vijayalakshmi, and B. K. Reddy (2015). Physica E: Low Dimens. Syst. Nanostruct. 73, 63–68.

    Article  CAS  Google Scholar 

  25. S. Kumar and N. K. Verma (2015). J. Electron. Mater. 44, 2829–2834.

    Article  CAS  Google Scholar 

  26. S. Elsi and K. Pushpanathan (2019). J. Mater. Sci. Mater. Electron. 30, 10792–10807.

    Article  CAS  Google Scholar 

  27. P. C. Patel, S. Ghosh, and P. C. Srivastava (2016). Mater. Res. Bull. 81, 85–92.

    Article  CAS  Google Scholar 

  28. Y. Li, C. Cao, and Z. Chen (2011). Chem. Phys. Lett. 51, 755–758.

    CAS  Google Scholar 

  29. A. Patterson (1939). Phys. Rev. 56, 978–982.

    Article  CAS  Google Scholar 

  30. Y. Waseda, E. Matsubara, and K. Shinoda, X-Ray Diffraction Crystallography, 1st ed. (Springer-Verlag, Berlin Heidelberg, 2011) pp. 123–127.

  31. P. K. Sharma, R. K. Dutta, A. C. Pandey, S. Layek, and H. C. Verma (2009). J. Magn. Magn. Mater. 321, 2587.

    Article  CAS  Google Scholar 

  32. D. Saikia, R. D. Raland, and J. P. Borah (2016). Physica E Low Dimens. Syst. Nanostruct. 83, 56–63.

    Article  CAS  Google Scholar 

  33. S. Ummartyotion, N. Bunnak, J. Juntaro, M. Sain, and H. Manuspiya (2012). Solid State Sci. 14, 299–304.

    Article  Google Scholar 

  34. M. S. Akhtar, M. A. Malik, S. Riaz, S. Naseem, and P. O. Brien (2015). Mater. Sci. Semicond. Process. 30, 292–297.

    Article  CAS  Google Scholar 

  35. G. K. Williamson and W. H. Hall (1953). Acta Metall. 1, 22–31.

    Article  CAS  Google Scholar 

  36. P. Monisha, P. Priyadharshini, S. S. Gomathi, M. Mahendran, and K. Pushpanathan (2019). Appl. Phys. A 125, 736.

    Article  Google Scholar 

  37. S. Venkatachalam, R. T. Rajendrakumar, D. Mangalaraj, S. K. Narayandass, and K. Kim (2004). Solid State Electron. 48, 2219.

    Article  CAS  Google Scholar 

  38. J. Hasanzadeh, A. Taherkhani, and M. Ghorbani (2013). Chin. J. Phys. 51, 540–550.

    CAS  Google Scholar 

  39. M. Grundmann (2021). The Physics of Semiconductors: An Introduction Including Devices and Nanophysics, 4th ed. (Springer, Cham).

  40. S. Sambasivama, B. K. Reddy, A. Divya, N. M. Rao, C. K. Jayasankar, and B. Sreedhar (2009). Phys. Lett. A 373, 1465–1468.

    Article  Google Scholar 

  41. J. P. Borah and K. C. Sarma (2008). Acta. Phys. Polon. A 114, 713–719.

    Article  CAS  Google Scholar 

  42. D. K. Ghosh, L. K. Samanta, and G. C. Bhar (1984). Infrared Phys. 24, 43–47.

    Article  CAS  Google Scholar 

  43. P. Hervb and L. K. J. Vandamme (1994). Infared Phys. Technol. 35, 609–615.

    Article  Google Scholar 

  44. I. Parvaneh, S. Samira, and N. Mohsen (2015). Chin. Phys. B 24, 046104.

    Article  Google Scholar 

  45. V. D. Mote, Y. Purushotham, and B. N. Dole (2013). Ceramica 59, 614–619.

    Article  CAS  Google Scholar 

  46. D. Kakoti, N. Rajkonwar, N. Dehingia, A. Boruah, P. Gogoi, and P. Dutta (2016). J. Phys. Conf. Ser. 765, 012021.

    Article  Google Scholar 

  47. H. Tang, G. Xu, L. Weng, L. Pan, and L. Wang (2004). Acta Mater. 52, 1489–1494.

    Article  CAS  Google Scholar 

  48. H. Y. Lu, S. Y. Chu, and S. S. Tan (2004). J. Cryst. Growth. 269, 385–395.

    Article  CAS  Google Scholar 

  49. P. H. Borse, N. Deshmukh, R. F. Shinde, S. K. Date, and S. K. Kulkarni (1999). J. Mater. Sci. 34, 6087–6093.

    Article  CAS  Google Scholar 

  50. S. S. Kumar, M. A. Khadar, S. K. Dhara, T. R. Ravindran, and K. G. M. Nair (2006). Nucl. Instr. Meth. Phys. Res. B 251, 435–440.

    Article  CAS  Google Scholar 

  51. T. M. Hammad, J. K. Salem, S. Kuhn, M. A. Draaz, R. Hempelmann, and F. S. Kodeh (2015). J. Mater. Sci.: Mater. Electron. 26, 5495–5501.

    CAS  Google Scholar 

  52. S. Iqbal, R. A. Khan, M. J. Iqbal, M. Waqas, J. Nisar, F. Shah, and A. R. Khan (2017). J. Mater. Sci.: Mater. Electron. 28, 4449–4457.

    CAS  Google Scholar 

  53. S. Vallejos, N. Pizurova, I. Gracia, C. Sotelo-Vazquez, J. Cechal, C. Blackman, I. Parkin, and C. Can (2016). ACS Appl. Mater. Interfaces 8, 33335–33342.

    Article  CAS  PubMed  Google Scholar 

  54. Y. P. Zhu, J. Li, T. Y. Ma, Y. P. Liu, D. Gaohui, and Z. Y. Yuan (2014). J. Mater. Chem. A2, 1093–1101.

    Article  Google Scholar 

  55. T. Srinivasulu, K. Saritha, and K. T. R. Reddy (2017). Mod. Electron. Mater. 3, 76–85.

    Article  Google Scholar 

  56. T. Yamashita and P. Hayes (2008). Appl. Surf. Sci. 254, 2441–2448.

    Article  CAS  Google Scholar 

  57. A. Shan, W. Liu, R. Wang, and C. Chen (2013). Phys. Chem. Chem. Phys. 15, 2405–2410.

    Article  CAS  PubMed  Google Scholar 

  58. P. Kaur, S. K. Pandey, S. Kumar, N. S. Negi, C. L. Chen, S. M. Rao, and M. K. Wu (2015). Appl. Nano Sci. 5, 975–981.

    Article  CAS  Google Scholar 

  59. X. Zhang, W. Zhang, X. Zhang, X. Xu, F. Meng, and C. C. Tang (2014). Adv. Cond. Matter. Phys. 2014, 806327.

    Google Scholar 

  60. V. Gandhi, R. Ganesan, H. H. A. Syedahamed, and M. Thaiyan (2014). J. Phys. Chem. 118, 9715–9725.

    CAS  Google Scholar 

  61. S. Kumar and N. K. Verma (2014). J. Mater. Sci.: Mater. Electron. 25, 1132–1137.

    CAS  Google Scholar 

  62. W. Z. Xiao, L. L. Wang, Q. Y. Rong, G. Xiao, and B. Meng (2014). J. Appl. Phys. 115, 213905(1)-213905(8).

    Google Scholar 

  63. D. Saikia and J. P. Borah (2017). J. Mater. Sci.: Mater. Electron. 28, 8029–8037.

    CAS  Google Scholar 

  64. P. Kaur, S. Kumar, A. Singh, C. L. Chen, C. L. Dong, T. S. Chan, K. P. Lee, C. Srivastava, S. M. Rao, and M. K. Wu (2015). Superlattices Microstruct. 83, 785–795.

    Article  CAS  Google Scholar 

  65. P. V. Raleaooa, A. Roodt, G. G. Mhlongo, D. E. Motaung, R. E. Kroon, and O. M. Ntwaeaborwa (2017). Physica B Condens. Matter. 507, 13–20.

    Article  CAS  Google Scholar 

  66. S. Elsi and K. Pushpanathan (2020). J. Supercond. Nov. Magn. 33, 3223–3240.

    Article  CAS  Google Scholar 

  67. O. D. Jayakumar, H. G. Salunke, R. M. Kadam, M. Mohapatra, G. Yaswant, and S. K. Kulshreshtha (2006). Nanotechnology 17, 1278.

    Article  CAS  Google Scholar 

  68. Y. Koseoglu (2013). J. Supercond. Nov. Magn. 26, 485–489.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Pushpanathan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohanapriya, S., Shobika, P.A., Elsi, S. et al. Ferromagnetism in Undoped ZnS and Fe Doped ZnS Quantum Dots Synthesized using Polyethylene Glycol. J Clust Sci 34, 1–18 (2023). https://doi.org/10.1007/s10876-021-02196-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-021-02196-0

Keywords

Navigation