Skip to main content

Advertisement

Log in

Fabrication of Multifunctional Wound Dressing Composite Biomaterials Composed of Ag/Mg-Hydroxyapatite Doped Electrospun Poly (Vinyl Alcohol) Nanofibers for Skin Tissue Regeneration

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

Developing wound dressing biomaterials is crucial to maintaining an appropriate health care system. Electrospun nanofibrous scaffolds of polyvinyl alcohol (PVA) encapsulated with co-doped hydroxyapatite (HAP) with [silver (Ag)/magnesium (Mg)] ions have been fabricated with a variation in Ag+ ions contributions. Besides, Ag/Mg-HAP powder forms have been investigated upon their structure. Their lattice parameters were investigated, including a-axis, and plunged slightly from 9.487 ± 0.03 to 9.467 ± 0.07 Å for the lowest and the highest additional Ag+ ions. Furthermore, the average surface roughness value increased from 16.0 nm to 25.9 nm for the lowest and the highest doped Ag+ for powdered phases, while it increased from 106.5 to 174.6 nm for the scaffold ones. The produced scaffolds were formed in random fibers distribution with diameters ranged from 3.4–7.8 to be 1.9–5.1 µm for the lowest and the highest ionic substitution. Moreover, the antibacterial effectiveness has been evaluated and showed that the inhibition zone grew from 14.8 ± 3.1 mm and 13.5 ± 4.2 mm to be 19.3 ± 3.8 mm and 17.6 ± 2.9 mm for the 0.4Ag/Mg-HAP@PVA and 0.8Ag/Mg-HAP@PVA against E. coli and S. aureus, respectively. Furthermore, the attachment of human fibroblasts cells has been tested in vitro and depicted that the cells could proliferate and grow adhesively through the scaffolds, which may support these platforms or substitutes to be examined for clinical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Y. Zou, R. Xie, E. Hu, P. Qian, B. Lu, G. Lan, and F. Lu (2020). Protein-reduced gold nanoparticles mixed with gentamicin sulfate and loaded into konjac/gelatin sponge heal wounds and kill drug-resistant bacteria. Int. J. Biol. Macromol. 148, 921–931.

    Article  CAS  PubMed  Google Scholar 

  2. H. D. Zomer, T. da Silva Jeremias, B. Ratner, and A. G. Trentin (2020). Mesenchymal stromal cells from dermal and adipose tissues induce macrophage polarization to a pro-repair phenotype and improve skin wound healing. Cytotherapy. 22, 247–260.

    Article  CAS  PubMed  Google Scholar 

  3. P. Zou, W.-H. Lee, Z. Gao, D. Qin, Y. Wang, J. Liu, T. Sun, and Y. Gao (2020). Wound dressing from polyvinyl alcohol/chitosan electrospun fiber membrane loaded with OH-CATH30 nanoparticles. Carbohydr. Polym. 232, 115786.

    Article  CAS  PubMed  Google Scholar 

  4. H. A. Radwan, R. A. Ismail, S. A. Abdelaal, B. A. Al Jahdaly, A. Almahri, M. K. Ahmed, and K. Shoueir (2021). Electrospun polycaprolactone nanofibrous webs containing Cu–Magnetite/Graphene oxide for cell viability, antibacterial performance, and dye decolorization from aqueous solutions. Arab. J. Sci. Eng. https://doi.org/10.1007/s13369-021-05363-7.

    Article  Google Scholar 

  5. A. A. Menazea, M. M. Eid, and M. K. Ahmed (2020). Synthesis, characterization, and evaluation of antimicrobial activity of novel Chitosan/Tigecycline composite. Int. J. Biol. Macromol. 147, 194–199.

    Article  CAS  PubMed  Google Scholar 

  6. M. M. Sayed, H. M. Mousa, M. R. El-Aassar, N. M. El-Deeb, N. M. Ghazaly, M. M. Dewidar, and A. Abdal-hay (2019). Enhancing mechanical and biodegradation properties of polyvinyl alcohol/silk fibroin nanofibers composite patches for cardiac tissue engineering. Mater. Lett. 255, 126510.

    Article  CAS  Google Scholar 

  7. A. Abdal-hay, M. Taha, H. M. Mousa, M. Bartnikowski, M. L. Hassan, M. Dewidar, and S. Ivanovski (2019). Engineering of electrically-conductive poly (ε-caprolactone)/multi-walled carbon nanotubes composite nanofibers for tissue engineering applications. Ceram. Int. 45, 15736–15740.

    Article  CAS  Google Scholar 

  8. A. A. Hassan, H. A. Radwan, S. A. Abdelaal, N. S. Al-Radadi, M. K. Ahmed, K. R. Shoueir, and M. A. Hady (2021). Polycaprolactone based electrospun matrices loaded with Ag/hydroxyapatite as wound dressings: Morphology, cell adhesion, and antibacterial activity. Int. J. Pharm. 593, 120143.

    Article  CAS  PubMed  Google Scholar 

  9. S. Abolghasemzade, M. Pourmadadi, H. Rashedi, F. Yazdian, S. Kianbakht, and M. Navaei-Nigjeh (2021). PVA based nanofiber containing CQDs modified with silica NPs and silk fibroin accelerates wound healing in a rat model. J. Mater. Chem. B. 9, 658–676.

    Article  CAS  PubMed  Google Scholar 

  10. Y. Agarwal, P. S. Rajinikanth, S. Ranjan, U. Tiwari, J. Balasubramnaiam, P. Pandey, D. K. Arya, S. Anand, and P. Deepak (2021). Curcumin loaded polycaprolactone-/polyvinyl alcohol-silk fibroin based electrospun nanofibrous mat for rapid healing of diabetic wound: An in-vitro and in-vivo studies. Int. J. Biol. Macromol. 176, 376–386.

    Article  CAS  PubMed  Google Scholar 

  11. M. I. Wuriantika, J. Utomo, M. Nurhuda, and D. Santjojo (2021). Nanostructure, porosity and tensile strength of PVA/Hydroxyapatite composite nanofiber for bone tissue engineering. Mater. Today Proc. 44, 3203–3206.

    Article  Google Scholar 

  12. M. A. Norouzi, M. Montazer, T. Harifi, and P. Karimi (2021). Flower buds like PVA/ZnO composite nanofibers assembly: Antibacterial, in vivo wound healing, cytotoxicity and histological studies. Polym. Test. 93, 106914.

    Article  CAS  Google Scholar 

  13. M. Keshvardoostchokami, S. S. Majidi, P. Huo, R. Ramachandran, M. Chen, and B. Liu (2021). Electrospun nanofibers of natural and synthetic polymers as artificial extracellular matrix for tissue engineering. Nanomaterials. 11, 21.

    Article  CAS  Google Scholar 

  14. K. R. Shoueir, A. M. Atta, A. A. Sarhan, and M. A. Akl (2017). Synthesis of monodisperse core shell PVA@P(AMPS-co-NIPAm) nanogels structured for pre-concentration of Fe(III) ions. Environ. Technol. 38, 967–978.

    Article  CAS  PubMed  Google Scholar 

  15. R. R. Fouad, H. A. Aljohani, and K. R. Shoueir (2016). Biocompatible poly(vinyl alcohol) nanoparticle-based binary blends for oil spill control. Mar. Pollut. Bull. 112, 42–52.

    Article  Google Scholar 

  16. A. M. Atta, G. A. El-Mahdy, H. A. Al-Lohedan, and K. R. Shoueir (2015). Electrochemical behavior of smart N-isopropyl acrylamide copolymer nanogel on steel for corrosion protection in acidic solution. Int. J. Electrochem. Sci. 10, 870–882.

    Google Scholar 

  17. J. Yun, J. S. Im, Y.-S. Lee, and H.-I. Kim (2011). Electro-responsive transdermal drug delivery behavior of PVA/PAA/MWCNT nanofibers. Eur. Polym. J. 47, 1893–1902.

    Article  CAS  Google Scholar 

  18. T. M. Tamer, M. M. Sabet, A. M. Omer, E. Abbas, A. I. Eid, M. S. Mohy-Eldin, and M. A. Hassan (2021). Hemostatic and antibacterial PVA/Kaolin composite sponges loaded with penicillin–streptomycin for wound dressing applications. Sci. Rep. 11, 1–15.

    Article  Google Scholar 

  19. S. Sultana, M. S. Hossain, M. Mahmud, M. Bin Mobarak, M. H. Kabir, N. Sharmin, and S. Ahmed (2021). UV-assisted synthesis of hydroxyapatite from eggshells at ambient temperature: cytotoxicity, drug delivery and bioactivity. RSC Adv. 11, 3686–3694.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. K. Szyszka, J. Rewak-Soroczynska, A. Dorotkiewicz-Jach, K. A. Ledwa, A. Piecuch, M. Giersig, Z. Drulis-Kawa, and R. J. Wiglusz (2020). Structural modification of nanohydroxyapatite Ca10 (PO4) 6 (OH) 2 related to Eu3+ and Sr2+ ions doping and its spectroscopic and antimicrobial properties. J. Inorg. Biochem. 203, 110884.

    Article  CAS  PubMed  Google Scholar 

  21. M. K. Ahmed, S. F. Mansour, R. Al-Wafi, S. I. El-dek, and V. Uskoković (2019). Tuning the mechanical, microstructural, and cell adhesion properties of electrospun ε-polycaprolactone microfibers by doping selenium-containing carbonated hydroxyapatite as a reinforcing agent with magnesium ions. J. Mater. Sci. 54, 14524–14544.

    Article  CAS  Google Scholar 

  22. M. K. Ahmed, S. F. Mansour, R. Al-Wafi, and A. Anter (2020). Composition and design of nanofibrous scaffolds of Mg/Se-hydroxyapatite/graphene oxide@ ε-polycaprolactone for wound healing applications. J. Mater. Res. Technol. 9, 7472–7485.

    Article  CAS  Google Scholar 

  23. K. Shoueir, M. K. Ahmed, S. A. A. Gaber, and M. El-Kemary (2020). Thallium and selenite doped carbonated hydroxyapatite: microstructural features and anticancer activity assessment against human lung carcinoma. Ceram. Int. 46, 5201–5212.

    Article  CAS  Google Scholar 

  24. A. A. Menazea, S. A. Abdelbadie, and M. K. Ahmed (2020). Manipulation of AgNPs coated on selenium/carbonated hydroxyapatite/ε-polycaprolactone nano-fibrous via pulsed laser deposition for wound healing applications. Appl. Surf. Sci. 508, 145299.

    Article  CAS  Google Scholar 

  25. M. K. Ahmed, S. F. Mansour, M. S. Mostafa, R. Darwesh, and S. I. El-dek (2019). Structural, mechanical and thermal features of Bi and Sr co-substituted hydroxyapatite. J. Mater. Sci. 54, 1977–1991.

    Article  CAS  Google Scholar 

  26. S. F. Mansour, S. I. El-Dek, S. V. Dorozhkin, and M. K. Ahmed (2017). Physico-mechanical properties of Mg and Ag doped hydroxyapatite/chitosan biocomposites. New J. Chem. 41, 13773–13783.

    Article  CAS  Google Scholar 

  27. M. T. Elsayed, A. A. Hassan, S. A. Abdelaal, M. M. Taher, M. K. Ahmed, and K. R. Shoueir (2020). Morphological, antibacterial, and cell attachment of cellulose acetate nanofibers containing modified hydroxyapatite for wound healing utilizations. J. Mater. Res. Technol. 9 (6), 13927–13936.

    Article  CAS  Google Scholar 

  28. S. F. Mansour, S. I. El-dek, and M. K. Ahmed (2017). Tailoring the structure of biphasic calcium phosphate via synthesis procedure. Mater. Res. Express. 4, 125015.

    Article  Google Scholar 

  29. S. C. Veerla, J. Kim, H. Sohn, and S. Y. Yang (2019). Controlled nanoparticle synthesis of Ag/Fe co-doped hydroxyapatite system for cancer cell treatment. Mater. Sci. Eng. C. 98, 311–323.

    Article  CAS  Google Scholar 

  30. C. S. Ciobanu, F. Massuyeau, L. V. Constantin, and D. Predoi (2011). Structural and physical properties of antibacterial Ag-doped nano-hydroxyapatite synthesized at 100 C. Nanoscale Res. Lett. 6, 1–8.

    Article  Google Scholar 

  31. C. Shi, J. Gao, M. Wang, J. Fu, D. Wang, and Y. Zhu (2015). Ultra-trace silver-doped hydroxyapatite with non-cytotoxicity and effective antibacterial activity. Mater. Sci. Eng. C. 55, 497–505.

    Article  CAS  Google Scholar 

  32. S. Kamonwannasit, C. M. Futalan, P. Khemthong, T. Butburee, A. Karaphun, and P. Phatai (2020). Synthesis of copper-silver doped hydroxyapatite via ultrasonic coupled sol-gel techniques: structural and antibacterial studies. J. Sol-Gel Sci. Technol. 96, 452–463.

    Article  CAS  Google Scholar 

  33. B. A. Al Jahdaly, N. S. Al-Radadi, G. M. G. Eldin, A. Almahri, M. K. Ahmed, K. Shoueir, and I. Janowska (2021). Selenium nanoparticles synthesized using an eco-friendly method: Dye decolorization from aqueous solutions, cell viability, antioxidant, and antibacterial effectiveness. J. Mater. Res. Technol. 11, 85–87.

    Article  CAS  Google Scholar 

  34. F. Liu, X. Wang, T. Chen, N. Zhang, Q. Wei, J. Tian, Y. Wang, C. Ma, and Y. Lu (2020). Hydroxyapatite/silver electrospun fibers for anti-infection and osteoinduction. J. Adv. Res. 21, 91–102.

    Article  CAS  PubMed  Google Scholar 

  35. M. F. H. Abd El-Kader, M. K. Ahmed, M. T. Elabbasy, M. Afifi, and A. A. Menazea (2021). Morphological, ultrasonic mechanical and biological properties of hydroxyapatite layers deposited by pulsed laser deposition on alumina substrates. Surf. Coatings Technol. 409, 126861.

    Article  Google Scholar 

  36. H. Shi, Z. Zhou, W. Li, Y. Fan, Z. Li, and J. Wei (2021). Hydroxyapatite based materials for bone tissue engineering: a brief and comprehensive introduction. Crystals. 11, 149.

    Article  CAS  Google Scholar 

  37. T. E. Paterson, R. Shi, J. Tian, C. J. Harrison, M. De Sousa Mendes, P. V. Hatton, Z. Li, and I. Ortega (2020). Electrospun scaffolds containing silver-doped hydroxyapatite with antimicrobial properties for applications in orthopedic and dental bone surgery. J. Funct. Biomater. 11, 58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Á. de Jesús Ruíz-Baltazar, S. Y. Reyes-López, P. N. Silva-Holguin, D. Larrañaga, M. Estévez, and R. Pérez (2018). Novel biosynthesis of Ag-hydroxyapatite: Structural and spectroscopic characterization. Results Phys. 9, 593–597.

    Article  Google Scholar 

  39. A. Fakharzadeh, R. Ebrahimi-Kahrizsangi, B. Nasiri-Tabrizi, and W. J. Basirun (2017). Effect of dopant loading on the structural features of silver-doped hydroxyapatite obtained by mechanochemical method. Ceram. Int. 43, 12588–12598.

    Article  CAS  Google Scholar 

  40. B. Yilmaz, A. Z. Alshemary, and Z. Evis (2019). Co-doped hydroxyapatites as potential materials for biomedical applications. Microchem. J. 144, 443–453.

    Article  CAS  Google Scholar 

  41. R. B. Bostancioglu, M. Gurbuz, A. G. Akyurekli, A. Dogan, A. S. Koparal, and A. T. Koparal (2017). Adhesion profile and differentiation capacity of human adipose tissue derived mesenchymal stem cells grown on metal ion (Zn, Ag and Cu) doped hydroxyapatite nano-coated surfaces. Colloids Surfaces B Biointerfaces. 155, 415–428.

    Article  CAS  PubMed  Google Scholar 

  42. M. H. Teaima, F. A. Abdelnaby, M. Fadel, M. A. El-Nabarawi, and K. R. Shoueir (2020). Synthesis of biocompatible and environmentally nanofibrous mats loaded with moxifloxacin as a model drug for biomedical applications. Pharmaceutics. 12, 1029.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. M. F. Abdelbar, R. S. Shams, O. M. Morsy, M. A. Hady, K. Shoueir, and R. Abdelmonem (2020). Highly ordered functionalized mesoporous silicate nanoparticles reinforced poly (lactic acid) gatekeeper surface for infection treatment. Int. J. Biol. Macromol. 156, 858–868.

    Article  CAS  PubMed  Google Scholar 

  44. Q. Wang, P. Tang, X. Ge, P. Li, C. Lv, M. Wang, K. Wang, L. Fang, and X. Lu (2018). Experimental and simulation studies of strontium/zinc-codoped hydroxyapatite porous scaffolds with excellent osteoinductivity and antibacterial activity. Appl. Surf. Sci. 462, 118–126.

    Article  CAS  Google Scholar 

  45. Y.-C. Liu, Y.-T. Lee, T.-C. Huang, G.-S. Lin, Y.-W. Chen, B.-S. Lee, and K.-L. Tung (2021). In vitro bioactivity and antibacterial activity of strontium-, magnesium-, and zinc-multidoped hydroxyapatite porous coatings applied via atmospheric plasma spraying. ACS Appl. Bio Mater. 4 (3), 2523–2533.

    Article  CAS  PubMed  Google Scholar 

  46. B. Singh, A. K. Dubey, S. Kumar, N. Saha, B. Basu, and R. Gupta (2011). In vitro biocompatibility and antimicrobial activity of wet chemically prepared Ca10− xAgx (PO4) 6 (OH) 2 (0.0≤ x≤ 0.5) hydroxyapatites. Mater. Sci. Eng. C. 31, 1320–1329.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kamel R. Shoueir.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 728 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mosaad, K.E., Shoueir, K.R. & Dewidar, M.M. Fabrication of Multifunctional Wound Dressing Composite Biomaterials Composed of Ag/Mg-Hydroxyapatite Doped Electrospun Poly (Vinyl Alcohol) Nanofibers for Skin Tissue Regeneration. J Clust Sci 34, 135–146 (2023). https://doi.org/10.1007/s10876-021-02195-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-021-02195-1

Keywords

Navigation