Skip to main content
Log in

Synthesis of Amphotericin B Conjugated Chitosan Nanomaterial From Fish Scales and Evaluation of its Antifungal Activity

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

Nanotechnology deals with the new facets of materials described as nanomaterials which have interesting attributes like large surface area to volume ratio compared to its native form. The goal of this study was to prepare chitosan nanomaterial and Amphotericin B conjugated chitosan nanomaterial from the chitosan polymer extracted from the fish scales. Generally, the rise of antibiotic resistant microorganisms demanded large scale exploitation of these polymeric nanomaterials. The limitations of standard Amphotericin B in terms of its instability issues, poor water solubility, and toxicities are solved by conjugating the drug with pure chitosan nanomaterial. The physicochemical characterization of the fabricated nanomaterials was analyzed using SEM-EDAX, FTIR, XRD, UV–Visible spectroscopy. The mean particle size of CS NM and AmB-conjugated CS NM was found to be 2.5 µm and 0.19 µm. Both nanomaterials are spherical shaped and highly stable. In vitro antifungal susceptibility testing using Candida parapsilopsis showed a dose dependent fungicidal activity by both nanomaterials. The antifungal activity was accessed. Additionally, the antibiofilm activity of the prepared nanomaterials was also examined. From the current study Amphotericin B conjugated chitosan nanomaterial manifested a superior antifungal activity compared to the parent nanomaterials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig.12
Fig. 13

Similar content being viewed by others

References

  1. V. Aparna, M. Shiva, R. Biswas, and R. Jayakumar (2018). Int. J. Biol. Macromol. 110, 2.

    Article  CAS  PubMed  Google Scholar 

  2. K. Kalantari, A. M. Afifi, H. Jahangirian, and T. J. Webster (2019). Carbohydr. Polym. 207, 588.

    Article  CAS  PubMed  Google Scholar 

  3. H. O. Ammar, S. A. El-Nahhas, M. M. Ghorab, and A. H. Salama (2012). J. Incl. Phenom. Macrocycl. Chem. 72, 127.

    Article  CAS  Google Scholar 

  4. G. Thandapani, S. Prasad, P. N. Sudha, and A. Sukumaran (2017). Int. J. Biol. Macromol. 104, 1794.

    Article  CAS  PubMed  Google Scholar 

  5. A. Ali and S. Ahmed (2018). Int. J. Biol. Macromol. 109, 273.

    Article  CAS  PubMed  Google Scholar 

  6. S. Kumari, P. Rath, A. S. H. Kumar, and T. N. Tiwari (2015). Environ. Technol. Innov. 3, 77.

    Article  Google Scholar 

  7. L. D. Tolesa, B. S. Gupta, and M. J. Lee (2019). Int. J. Biol. Macromol. 130, 818.

    Article  CAS  PubMed  Google Scholar 

  8. I. Younes and M. Rinaudo (2015). Mar. Drugs 13, 1133.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. D. R. Perinelli, L. Fagioli, R. Campana, J. K. Lam, W. Baffone, G. F. Palmieri, L. Casettari, and G. Bonacucina (2018). Eur. J. Pharm. Sci. 117, 18.

    Article  Google Scholar 

  10. Z. Song, Y. Wen, P. Deng, F. Teng, F. Zhou, H. Xu, S. Feng, L. Zhu, and R. Feng (2019). Carbohydr. Polym. 205, 571.

    Article  CAS  PubMed  Google Scholar 

  11. F. Ahmadi, Z. Oveisi, S. M. Samani, and Z. Amoozgar (2015). Res. Pharm. Sci. 10 (1), 1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. A. Shanmugam, K. Kathiresan, and L. Nayak (2016). Biotech. Rep. 9, 25.

    Article  Google Scholar 

  13. M. Shafiei, H. Jafarizadeh-Malmiri, and M. Rezaei (2019). Biologia 74 (11), 1561.

    Article  CAS  Google Scholar 

  14. P. Gutierrez-Martinez, A. Ledezma-Morales, L.D.C. Romero-Islas, A. Ramos-Guerrero, J. Romero-Islas, C. Rodríguez-Pereida, P. Casas-Junco, L. Coronado-Partida, and R.R. González-Estrada, (2018). Chitin-Chitosan-Myriad Functionalities in Science and Technology, SBN 978–1–78923–406–0. 311–327.

  15. Y. Tan, M. Leonhard, D. Moser, and B. Schneider-Stickler (2016). Candida species. Carbohydr. Polym. 149, 77.

    Article  CAS  PubMed  Google Scholar 

  16. R. A. Krishnan, T. Pant, S. Sankaranarayan, J. Stenberg, R. Jain, and P. Dandekar (2018). Mater. Sci. Eng. C 93, 472.

    Article  CAS  Google Scholar 

  17. M. Sandhya, V. Aparna, B. Raja, R. Jayakumar, and S. Sathianarayanan (2018). Int. J. Biol. Macromol. 110, 133.

    Article  CAS  PubMed  Google Scholar 

  18. Z. Ma, A. Garrido-Maestu, and K. C. Jeong (2017). Carbohydr. Polym. 176, 257.

    Article  CAS  PubMed  Google Scholar 

  19. S. F. Hosseini, M. Rezaei, M. Zandi, and F. Farahmandghavi (2014). Food hydrocoll. 44, 172.

    Article  Google Scholar 

  20. S. Jain, C. S. K. Reddy, R. Swami, and V. Kushwah (2018). AAPS Pharm. Sci. Tech. 19 (7), 3152.

    CAS  Google Scholar 

  21. Y. Tan, M. Leonhard, S. Ma, D. Moser, and B. Schneider-Stickler (2018). Int. J. Biol. Macromol. 110, 150.

    Article  CAS  PubMed  Google Scholar 

  22. X. He, K. Li, R. Xing, S. Liu, L. Hu, and P. Li (2016). Egypt. J. Aquat. Res. 42 (1), 75.

    Article  Google Scholar 

  23. V. Saharan, A. Mehrotra, R. Khatik, P. Rawal, S. S. Sharma, and A. Pal (2013). Int. J. Biol. Macromol. 62, 677.

    Article  CAS  PubMed  Google Scholar 

  24. K. A. M. O’Callaghan and J. P. Kerry (2016). Food Cont. 69, 256.

    Article  CAS  Google Scholar 

  25. Y. Tan, S. Ma, M. Leonhard, D. Moser, G. M. Haselmann, J. Wang, D. Eder, and B. Schneider-Stickler (2018). Carbohydr. Polym. 200, 35.

    Article  CAS  PubMed  Google Scholar 

  26. R. N. Wijesena, N. Tissera, Y. Y. Kannangara, Y. Lin, G. A. J. Amaratunga, and K.M.N., Silva, (2014). Carbohydr. Polym. 117, 731.

    Google Scholar 

  27. A. R. Madureira, A. Pereira, P. M. Castro, and M. Pintado (2015). J. Food Eng. 167, 210.

    Article  CAS  Google Scholar 

  28. M. Sathiyabama and R. Parthasarathy (2016). Carbohydr. Polym. 151, 321.

    Article  CAS  PubMed  Google Scholar 

  29. R. G. D. J. V. Marcano, T. T. Tominaga, N. M. Khalil, L. S. Pedroso, and R. M. Mainardes (2018). Carbohydr. Polym 202, 345.

    Google Scholar 

  30. A. B. Muley, S. A. Chaudhari, K. H. Mulchandani, and R. S. Singhal (2018). Int. J. Biol. Macromol. 111, 1047.

    Article  CAS  PubMed  Google Scholar 

  31. N. M. Kazemi and A. A. Salimi (2019). Iran. J. Sci. Technol. Trans. A: Sci. 43 (6), 2781.

    Article  Google Scholar 

  32. D. Wang and W. Jiang (2019). Int. J. Biol. Macromol. 126, 1125.

    Article  CAS  PubMed  Google Scholar 

  33. K. Divya and M. S. Jisha (2018). Environ. Chem. Lett. 16, 101.

    Article  CAS  Google Scholar 

  34. C. Y. Huang, C. H. Kuo, C. H. Wu, M. W. Ku, and P. W. Chen (2018). Food chem. 254, 217.

    Article  CAS  PubMed  Google Scholar 

  35. D. Liu, P. R. Chang, M. Chen, and Q. Wu (2011). J. Colloid Interface Sci. 354, 637.

    Article  CAS  PubMed  Google Scholar 

  36. S. Zahedi, J. S. Ghomi, and H. Shahbazi-Alavi (2018). Ultrason. Sonochem. 40, 260.

    Article  CAS  PubMed  Google Scholar 

  37. T. Grisin, C. Bories, M. Bombardi, P. Loiseau, V. Rouffiac, A. Solgadi, J. M. Mallet, G. Ponchel, and K. Bouchemal (2017). Pharm. Res. 34, 1067.

    Article  CAS  PubMed  Google Scholar 

  38. L. Scorzoni, F. Sangalli-Leite, J. de Lacorte Singulani, C.B. Costa-Orlandi, A.M. Fusco-Almeida, and M.J.S. Mendes-Giannini, (2016). J. Microbiol. Methods 123, 68.

  39. E. M. Costa, S. Silva, S. Vicente, C. Neto, P. M. Castro, M. Veiga, R. Madureira, F. Tavaria, and M. M. Pintado (2017). Mater. Sci. Eng. C 79, 221.

    Article  CAS  Google Scholar 

  40. E. Darabpour, N. Kashef, and S. Mashayekhan (2016). Photodiagnosis Photodyn Ther. 14, 211.

    Article  CAS  PubMed  Google Scholar 

  41. S. Muthamil, V. A. Devi, B. Balasubramaniam, K. Balamurugan, and S. K. Pandian (2018). J. Basic Microbiol. 58 (4), 343.

    Article  CAS  PubMed  Google Scholar 

  42. P. Nithyanand, R. M. B. Shafreen, S. Muthamil, and S. K. Pandian (2015). Microbiol. Res. 179, 20.

    Article  CAS  PubMed  Google Scholar 

  43. B. L. C. Gondim, L. R. C. Castellano, R. D. de Castro, G. Machado, H. L. Carlo, A. M. G. Valença, and F. G. de Carvalho (2018). Arch. Oral Biol. 94, 99.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The corresponding author thankfully acknowledge the Karpagam Academy of Higher Education for provided the laboratory facilities to conduct the experiments and also the author acknowledges the DST-FIST fund for infrastructure facility (SR/FST/LS-1/2018/187). First author thankfully acknowledges the Sri Krishna Arts and Science College for provided the laboratory facilities to conduct the experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Rajiv.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Narendhran, S., Rajiv, P. Synthesis of Amphotericin B Conjugated Chitosan Nanomaterial From Fish Scales and Evaluation of its Antifungal Activity. J Clust Sci 33, 2573–2587 (2022). https://doi.org/10.1007/s10876-021-02177-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-021-02177-3

Keywords

Navigation