Skip to main content
Log in

Lanthanide-Base Helical Chain Constructed by In Situ Schiff Base Reaction: Structures and Magnetic Properties

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

Schiff base ligands with multiple chelating coordination sites are usually able to quickly capture lanthanide metal ions to form complexes, and it is difficult to twist and construct helical chains. In this work, we used 2-hydroxy-1-naphthaldehyde, propylenediamine, and Ln(NO3)3·6H2O to react at 80 °C in solvothermal to obtain chains [Ln = Dy (1); Ln = Gd (2)] with a helical structure. It is worth noting that 2-hydroxy-1-naphthaldehyde and propylenediamine undergo an in situ reaction under one-pot conditions to form ligand 1,1′-((1E,1′E)-(propane-1,3-diylbis(azaneylylidene))bis(methaneylylidene))bis(naphthalen-2-ol) (H2L). The ligand (L)2− bridges the two metal center Ln(III) ions with a monodentate, causing it to twist into an “S” shape and further form a helical chain. In addition, the independent unit of the helical chain is a single core, and its metal center is in the O9 coordination environment provided by the ligand and the end group coordination NO3 ions. What’s more noteworthy is that chain 1 exhibits single-molecule magnet (SMM) behavior, and its SMM performance is significantly improved under the DC field induction condition of 600 Oe. By Debye model fitting, the effective energy barrier of 1 is 17.8 K, and the relaxation time is 2.4 × 10–6 s. The magnetocaloric effect test of chain 2 is further carried out. When ΔH = 7 T and T = 2 K, its − ΔSm reaches the maximum value of 16.19 J K−1 kg−1.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. J.-L. Liu, Y.-C. Chen, F.-S. Guo, and M.-L. Tong (2014). Recent advances in the design of magnetic molecules for use as cryogenic magnetic coolants. Coord. Chem. Rev. 281, 26–49.

    CAS  Google Scholar 

  2. J.-H. Jia, Q.-W. Li, Y.-C. Chen, J.-L. Liu, and M.-L. Tong (2019). Luminescent single-molecule magnets based on lanthanides: design strategies, recent advances and magneto-luminescent studies. Coord. Chem. Rev. 378, 365–381.

    CAS  Google Scholar 

  3. P. Zhang, Y.-N. Guo, and J. Tang (2013). Recent advances in dysprosium-based single molecule magnets: structural overview and synthetic strategies. Coord. Chem. Rev. 257, 1728–1763.

    CAS  Google Scholar 

  4. Z.-H. Zhu, J.-M. Peng, H.-L. Wang, H.-H. Zou, and F.-P. Liang (2020). Assembly mechanism and heavy metal ion sensing of cage-shaped lanthanide nanoclusters. Cell Rep. Phys. Sci. 1 (8), 100165.

    CAS  Google Scholar 

  5. X.-Y. Li, H.-F. Su, Q.-W. Li, R. Feng, H.-Y. Bai, H.-Y. Chen, J. Xu, and X.-H. Bu (2019). A giant Dy76 cluster: a new fused Bi-nanopillar structural model in lanthanide clusters. Angew. Chem. Int. Ed. 58, 10184–10188.

    CAS  Google Scholar 

  6. L. Qin, Y.-Z. Yu, P.-Q. Liao, W. Xue, Z. Zheng, X.-M. Chen, and Y.-Z. Zheng (2016). A “Molecular Water Pipe”: a giant tubular cluster Dy72 exhibits fast proton transport and slow magnetic relaxation. Adv. Mater. 28, 10772–10779.

    CAS  PubMed  Google Scholar 

  7. X.-J. Kong, Y. Wu, L.-S. Long, L.-S. Zheng, and Z. Zheng (2009). A chiral 60-metal sodalite cage featuring 24 vertex-sharing [Er4(μ3-OH)4] cubanes. J. Am. Chem. Soc. 131, 6918–6919.

    CAS  PubMed  Google Scholar 

  8. X.-M. Luo, Z.-B. Hu, Q. Lin, W. Cheng, J.-P. Cao, C.-H. Cui, H. Mei, Y. Song, and Y. Xu (2018). Exploring the performance improvement of magnetocaloric effect based Gd-exclusive cluster Gd60. J. Am. Chem. Soc. 140, 11219–11222.

    CAS  PubMed  Google Scholar 

  9. M. Wu, F. Jiang, D. Yuan, J. Pang, J. Qian, S. A. AL-Thabaiti, and M. Hong (2014). Polymeric double-anion templated Er48 nanotubes. Chem. Commun. 50, 1113–1115.

    CAS  Google Scholar 

  10. Z.-R. Luo, H.-L. Wang, Z.-H. Zhu, T. Liu, X.-F. Ma, H.-F. Wang, H.-H. Zou, and F.-P. Liang (2020). Assembly of Dy60 and Dy30 cage-shaped nanoclusters. Commun. Chem. 3 (1), 30. https://doi.org/10.1038/s42004-020-0276-3.

    Article  CAS  Google Scholar 

  11. J. Dong, P. Cui, P.-F. Shi, P. Cheng, and B. Zhao (2015). Ultrastrong alkali-resisting lanthanide-zeolites assembled by [Ln60] nanocages. J. Am. Chem. Soc. 137, 15988–15991.

    CAS  PubMed  Google Scholar 

  12. Y.-J. Ma, J.-X. Hu, S.-D. Han, J. Pan, J.-H. Li, and G.-M. Wang (2020). Manipulating on/off single-molecule magnet behavior in a Dy(III)-based photochromic complex. J. Am. Chem. Soc. 142, 2682–2689.

    CAS  PubMed  Google Scholar 

  13. H.-L. Wang, J.-M. Peng, Z.-H. Zhu, K.-Q. Mo, X.-F. Ma, B. Li, H.-H. Zou, and F.-P. Liang (2019). Step-by-step and competitive assembly of two Dy(III) single-molecule magnets with their performance tuned by Schiff base ligands. Cryst. Growth Des. 19, 5369–5375.

    CAS  Google Scholar 

  14. K.-Q. Mo, Z.-H. Zhu, H.-L. Wang, X.-F. Ma, J.-M. Peng, H.-H. Zou, and F.-P. Liang (2019). Substituents lead to differences in the formation of two different butterfly-shaped NiII2DyIII2 clusters: structures and multistep assembly mechanisms. Dalton Trans. 48 (44), 16641–16649.

    CAS  PubMed  Google Scholar 

  15. H.-L. Wang, T. Liu, Z.-H. Zhu, J.-M. Peng, H.-H. Zou, and F.-P. Liang (2021). A series of dysprosium clusters assembled by a substitution effect-driven out-to-in growth mechanism. Inorg. Chem. Front. 8, 2136–2143.

    CAS  Google Scholar 

  16. Z.-H. Zhu, X.-F. Ma, H.-L. Wang, H.-H. Zou, K.-Q. Mo, Y.-Q. Zhang, Q.-Z. Yang, B. Li, and F.-P. Liang (2018). A triangular Dy3 single-molecule toroic with high inversion energy barrier: magnetic properties and multiple-step assembly mechanism. Inorg. Chem. Front. 5, 3155–3162.

    CAS  Google Scholar 

  17. H.-L. Wang, X.-F. Ma, J.-M. Peng, Z.-H. Zhu, B. Li, H.-H. Zou, and F.-P. Liang (2019). Tracking the stepwise formation of the dysprosium cluster (Dy10) with multiple relaxation behavior. Inorg. Chem. 58, 9169–9174.

    CAS  PubMed  Google Scholar 

  18. X.-F. Ma, H.-L. Wang, Z.-H. Zhu, B. Li, K.-Q. Mo, H.-H. Zou, and F.-P. Liang (2019). Formation of nanocluster Dy12 containing Dy-exclusive vertex-sharing [Dy43-OH)4] cubanes via simultaneous multitemplate guided and step-by-step assembly. Dalton Trans. 48, 11338–11344.

    CAS  PubMed  Google Scholar 

  19. K.-Q. Mo, X.-F. Ma, H.-L. Wang, Z.-H. Zhu, Y.-C. Liu, H.-H. Zou, and F.-P. Liang (2019). Tracking the multistep formation of Ln(III) complexes with in situ Schif base exchange reaction and its highly selective sensing of dichloromethane. Sci. Rep. 9, 12231–12237.

    PubMed  PubMed Central  Google Scholar 

  20. A. Neshat, M. Gholinejad, H. Özcan, et al. (2021). Suzuki coupling reactions catalyzed by Schiff base supported palladium complexes bearing the vitamin B6 cofactor. Mol. Catal. 505, 111528.

    CAS  Google Scholar 

  21. N. C. Jana, P. Brandão, A. Frontera, et al. (2020). A facile biomimetic catalytic activity through hydrogen atom abstraction by the secondary coordination sphere in manganese(III) complexes. Dalton Trans. 49, 14216–14230.

    CAS  PubMed  Google Scholar 

  22. Q. Zhang, J. Shu, Y. Zhang, et al. (2020). Structures and esterolytic reactivity of novel binuclear copper(II) complexes with reduced l-serine Schiff bases as mimic carboxylesterases. Dalton Trans. 49, 10261–10269.

    CAS  PubMed  Google Scholar 

  23. F. Faridbod, M. R. Ganjali, R. Dinarvand, et al. (2008). Schiff’s bases and crown ethers as supramolecular sensing materials in the construction of potentiometric membrane sensors. Sensors. 8, 1645–1703.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. A. J. Mayans, M. Bardia, B. L. Di, et al. (2018). Chiral [MnIIMnIII3M’] (M’ = NaI, CaII, MnII) and [MnIIMnIII6NaI2] clusters built from an enantiomerically pure Schiff base: synthetic, chiroptical and magnetic properties. Chem. Eur. J. 24, 18705–18717.

    CAS  PubMed  Google Scholar 

  25. D. C. Liu, D. C. Zhong, and T. B. Lu (2020). Non-noble metal-based molecular complexes for CO2 reduction: from the ligand design perspective. EnergyChem. 2, 100034.

    Google Scholar 

  26. K. Zhang, V. Montigaud, O. Cador, G. P. Li, B. L. Guennic, J. Tang, and Y. Y. Wang (2018). Tuning the magnetic interactions in Dy(III)4 single-molecule magnets. Inorg. Chem. 57, 8550–8557.

    CAS  PubMed  Google Scholar 

  27. G. Karotsis, S. Kennedy, S. J. Teat, C. M. Beavers, D. A. Fowler, J. J. Morales, M. Evangelisti, S. J. Dalgarno, and E. K. Brechin (2010). [MnIII4LnIII4] Calix[4]arene clusters as enhanced magnetic coolers and molecular magnets. J. Am. Chem. Soc. 132, 12983–12990.

    CAS  PubMed  Google Scholar 

  28. J.-B. Peng, Q.-C. Zhang, X.-J. Kong, Y.-Z. Zheng, Y.-P. Ren, L.-S. Long, R.-B. Huang, L.-S. Zheng, and Z. Zheng (2012). High-nuclearity 3d–4f clusters as enhanced magnetic coolers and molecular magnets. J. Am. Chem. Soc. 134, 3314–3317.

    CAS  PubMed  Google Scholar 

  29. C.-M. Liu, D.-Q. Zhang, X. Hao, and D.-B. Zhu (2020). Assembly of chiral 3d–4f wheel-like cluster complexes with achiral ligands: single-molecule magnetic behavior and magnetocaloric effect. Inorg. Chem. Front. 7, 3340–3351.

    CAS  Google Scholar 

  30. S.-D. Han, X.-H. Miao, S.-J. Liu, and X.-H. Bu (2014). Magnetocaloric effect and slow magnetic relaxation in two dense (3,12)-connected lanthanide complexes. Inorg. Chem. Front. 1, 549–552.

    CAS  Google Scholar 

  31. M.-L. Han, Y.-P. Duan, D.-S. Li, G.-W. Xu, Y.-P. Wu, and J. Zhao (2014). A series of divalent metal coordination polymers based on isomeric tetracarboxylic acids: synthesis, structures, and magnetic properties. Dalton Trans. 43, 17519–17527.

    CAS  PubMed  Google Scholar 

  32. M.-L. Han, X.-H. Chang, X. Feng, L.-F. Ma, and L.-Y. Wang (2014). Temperature and pH driven self-assembly of Zn(II) coordination polymers: crystal structures, supramolecular isomerism, and photoluminescence. CrystEngComm 16, 1687–1695.

    CAS  Google Scholar 

  33. Z.-H. Zhou, M.-L. Han, Y.-P. Wu, W.-W. Dong, D.-S. Li, and J. Y. Lu (2016). N-donor co-ligands driven two new Co(II)- coordination polymers with bi- and trinuclear units: crystal structures, and magnetic properties. J. Solid State Chem. 242, 207–211.

    CAS  Google Scholar 

  34. M.-L. Han, X.-Q. Wu, G.-W. Xu, G.-X. Wen, D.-S. Li, and L.-F. Ma (2016). A Ni(II) ferromagnet with mixed pyridine-3,5-dicarboxylate-1,4-bis (imidazol-l-yl) butane heterobridges exhibiting long-range ordering and hysteresis loop. Inorg. Chem. Commun. 69, 31–34.

    CAS  Google Scholar 

  35. Y. A. Tyula, A. Zabardasti, H. Goudarziafshar, et al. (2017). Template synthesis of two new supramolecular zinc(II) complexes containing pentadentate N3O2 semicarbazone ligand: nanostructure synthesis, Hirshfeld surface analysis, and DFT studies. J. Mol. Struct. 1150, 383–394.

    CAS  Google Scholar 

  36. M. A. AlDamen, N. Charef, H. K. Juwhari, et al. (2016). Crystal structures, optical properties, and TD-DFT study of a zinc(II) Schiff-base complex derived from salicylaldehyde and N-1-(3-aminopropyl)-propane-1,3-diamine. J. Chem. Crystallogr. 46, 411–420.

    CAS  Google Scholar 

  37. K. Binnemans (2009). Lanthanide-based luminescent hybrid materials. Chem. Rev. 109, 4283–4374.

    CAS  PubMed  Google Scholar 

  38. B. Biswas, P. Raghavaiah, N. Aliaga-Alcalde, et al. (2010). Syntheses, crystal structures and properties of a new family of isostructural and isomorphous compounds of type [M(L)(NCS)3] [M = La, Gd, Tb and Dy; L = a neutral hexadentate Schiff base]. Polyhedron. 29, 2716–2721.

    CAS  Google Scholar 

  39. D. Lionetti, V. W. Day, and J. D. Blakemore (2017). Noncovalent immobilization and surface characterization of lanthanide complexes on carbon electrodes. Dalton Trans. 46, 11779–11789.

    CAS  PubMed  Google Scholar 

  40. Y. Zhang, M. Bhadbhade, L. Kong, et al. (2017). Syntheses and crystal structures of thorium(IV) and uranium (IV) tripodal metalloligands. Polyhedron. 138, 82–87.

    CAS  Google Scholar 

  41. H.-L. Wang, Z.-H. Zhu, X.-F. Ma, H.-H. Zou, and F.-P. Liang (2019). Metal-helix frameworks formed by μ3-NO3 with different orientations and connected to a heterometallic CuII10DyIII2 folded cluster. Chem. Eur. J. 25, 10813–10817.

    CAS  PubMed  Google Scholar 

  42. H.-L. Wang, X.-F. Ma, Z.-H. Zhu, Y.-Q. Zhang, H.-H. Zou, and F.-P. Liang (2019). A series of dysprosium-based hydrogen-bonded organic frameworks (Dy-HOFs): thermally triggered off→on conversion of a single-ion magnet. Inorg. Chem. Front. 6, 2906–2913.

    CAS  Google Scholar 

  43. S. Alvarez, P. Alemany, D. Casanova, J. Cirera, M. Llunell, and D. Avnir (2005). Shape maps and polyhedral interconversion paths in transition metal chemistry. Coord. Chem. Rev. 249, 1693–1708.

    CAS  Google Scholar 

  44. F.-S. Guo, A. K. Bar, and R. A. Layfield (2019). Main group chemistry at the interface with molecular magnetism. Chem. Rev. 119, 8479–8505.

    CAS  PubMed  Google Scholar 

  45. N. Ishikawa, M. Sugita, T. Ishikawa, S. Koshihara, and Y. Kaizu (2003). Lanthanide double-decker complexes functioning as magnets at the single-molecular level. J. Am. Chem. Soc. 125, 8694–8695.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 22061005), Guangxi Natural Science Foundation (Grant Nos. 2020GXNSFAA159075, 2020AA23001AA), and Hebei Key Laboratory of Heterocyclic Compounds (Grant No. 19-01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hua-Hong Zou.

Ethics declarations

Conflict of interest

There are no conflict to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 734 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, TC., Bai, J., Sun, XH. et al. Lanthanide-Base Helical Chain Constructed by In Situ Schiff Base Reaction: Structures and Magnetic Properties. J Clust Sci 33, 2399–2406 (2022). https://doi.org/10.1007/s10876-021-02163-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-021-02163-9

Keywords

Navigation