Skip to main content

Advertisement

Log in

Synergic Fabrication of Gold Nanoparticles Embedded Dextran/ Silk Sericin Nanomaterials for the Treatment and Care of Wound Healing

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

Gold-loaded nanoparticles are versatile nanomaterials that may be used in wound healing properties. The current study describes a wound dressing formulation focused on Gold-loaded Dextran/Silk Sericin nanoparticles. The Gold-loaded Dextran/Silk Sericin membranes were fabricated using Gold solutions inside the Dextran/Silk Sericin medium. The influence of various experimental conditions on Dextran/Silk Sericin nanoparticle formations were examined. The sizes of Dextran/Silk Sericin and Gold@Dextran/Silk Sericin nanoparticles were examined through the HR-SEM. Moreover, the efficacy antibacterial activity of Dextran/Silk Sericin and Gold-loaded Dextran/Silk Sericin nanoparticles was evaluated against the microorganisms gram-positive and negative. Furthermore, we observed the in vivo wound healing of wounds in skin using a mice model over a 16 days period. In this difference to the wounds of untreated mouse, quick healing was observed in the Gold-loaded Dextran/Silk Sericin nanoparticles-treated wounds with fewer injury. These results specify that Gold-loaded Dextran/Silk Sericin nanoparticles-based dressing material could be a ground-breaking nanomaterial having wound repair and implantations potential required for wound damages, which was proven using an animal model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. M. S. Bakshi (2017). Chem. Res. Toxicol. 30, 1253–1274. https://doi.org/10.1021/acs.chemrestox.7b00068.

    Article  CAS  PubMed  Google Scholar 

  2. C.-W. Lin, Z.-Y. Guan, M. Lu, T.-Y. Wu, N.-C. Cheng, H.-Y. Chen, and J. Yu (2020). ACS Appl. Bio Mater. 3, 5678–5686. https://doi.org/10.1021/acsabm.0c00435.

    Article  CAS  PubMed  Google Scholar 

  3. I. S. Raja and N. N. Fathima (2018). ACS Appl. Bio Mater. 1, 487–495. https://doi.org/10.1021/acsabm.8b00208.

    Article  CAS  PubMed  Google Scholar 

  4. A. Memic, T. Abudula, H. S. Mohammed, K. Joshi Navare, T. Colombani, and S. A. Bencherif (2019). ACS Appl Bio Mater. 2, 952–969. https://doi.org/10.1021/acsabm.8b00637.

    Article  CAS  PubMed  Google Scholar 

  5. H. Yu, J. Peng, Y. Xu, J. Chang, and H. Li (2016). ACS Appl. Mater. Interfaces 8, 703–715. https://doi.org/10.1021/acsami.5b09853.

    Article  CAS  PubMed  Google Scholar 

  6. Z. Li, S. Chen, B. Wu, Z. Liu, L. Cheng, Y. Bao, Y. Ma, L. Chen, X. Tong, and F. Dai (2020). ACS Biomater. Sci. Eng. https://doi.org/10.1021/acsbiomaterials.0c01512.

  7. X. Zhao, B. Guo, H. Wu, Y. Liang, and P. X. Ma (2018). Nat. Commun. 9, 2784. https://doi.org/10.1038/s41467-018-04998-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Y. Huang, X. Zhao, Z. Zhang, Y. Liang, Z. Yin, B. Chen, L. Bai, Y. Han, and B. Guo (2020). Chem. Mater. 32, 6595–6610. https://doi.org/10.1021/acs.chemmater.0c02030.

    Article  CAS  Google Scholar 

  9. M. Li, J. Chen, M. Shi, H. Zhang, P. X. Ma, and B. Guo (2019). Chem. Eng. J. 375, 121999. https://doi.org/10.1016/j.cej.2019.121999.

    Article  CAS  Google Scholar 

  10. J. He, Y. Liang, M. Shi, and B. Guo (2020). Chem. Eng. J. 385, 123464. https://doi.org/10.1016/j.cej.2019.123464.

    Article  CAS  Google Scholar 

  11. F. Gao, W. Li, J. Deng, J. Kan, T. Guo, B. Wang, and S. Hao (2019). ACS Appl. Mater. Interfaces. 11, 18681–18690. https://doi.org/10.1021/acsami.9b01725.

    Article  CAS  PubMed  Google Scholar 

  12. T. Mehrabi, A. S. Mesgar, and Z. Mohammadi (2020). ACS Biomater. Sci. Eng. 6, 5399–5430. https://doi.org/10.1021/acsbiomaterials.0c00528.

    Article  CAS  PubMed  Google Scholar 

  13. U. D. S. Sekhon and A. Sen Gupta (2018). ACS Biomater Sci. Eng. 4, 1176–1192. https://doi.org/10.1021/acsbiomaterials.7b00013.

    Article  CAS  PubMed  Google Scholar 

  14. C. Chen, Y. Liu, H. Wang, G. Chen, X. Wu, J. Ren, H. Zhang, and Y. Zhao (2018). ACS Nano. 12, 10493–10500. https://doi.org/10.1021/acsnano.8b06237.

    Article  CAS  PubMed  Google Scholar 

  15. Y. Long, H. Wei, J. Li, G. Yao, B. Yu, D. Ni, A. L. F. Gibson, X. Lan, Y. Jiang, W. Cai, and X. Wang (2018). ACS Nano. 12, 12533–12540. https://doi.org/10.1021/acsnano.8b07038.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. H. Luo, X.-Q. Yin, P.-F. Tan, Z.-P. Gu, Z.-M. Liu, and L. Tan (2021). J. Mater. Chem. B. 9, 2802–2815. https://doi.org/10.1039/D1TB00109D.

    Article  CAS  PubMed  Google Scholar 

  17. T. Sathiya Kamatchi, M. K. Mohamed Subarkhan, R. Ramesh, H. Wang, and J. G. Małecki (2020). Dalton Trans. 49, 11385–11395. https://doi.org/10.1039/D0DT01476A.

    Article  CAS  PubMed  Google Scholar 

  18. X. Bai, W. Liu, L. Xu, Q. Ye, H. Zhou, C. Berg, H. Yuan, J. Li, and W. Xia (2021). J. Mater. Chem. B. 9, 2885–2898. https://doi.org/10.1039/D0TB02884C.

    Article  CAS  PubMed  Google Scholar 

  19. A. Sharma, P. Sharma, and S. Roy (2021). Soft Matter. 17, 3266–3290. https://doi.org/10.1039/D0SM02202K.

    Article  CAS  PubMed  Google Scholar 

  20. P. A. Shiekh, A. Singh, and A. Kumar (2020). Biomaterials. 249, 120020. https://doi.org/10.1016/j.biomaterials.2020.120020.

    Article  CAS  PubMed  Google Scholar 

  21. D. Chouhan, N. Dey, N. Bhardwaj, and B. B. Mandal (2019). Biomaterials. 216, 119267. https://doi.org/10.1016/j.biomaterials.2019.119267.

    Article  CAS  PubMed  Google Scholar 

  22. H. Zhao, J. Huang, Y. Li, X. Lv, H. Zhou, H. Wang, Y. Xu, C. Wang, J. Wang, and Z. Liu (2020). Biomaterials. 258, 120286. https://doi.org/10.1016/j.biomaterials.2020.120286.

    Article  CAS  PubMed  Google Scholar 

  23. N. Mohan, M. K. Mohamed Subarkhan, and R. Ramesh (2018). Chemistry. https://doi.org/10.1016/j.jorganchem.2018.01.022.

  24. L. Sheng, Z. Zhang, Y. Zhang, E. Wang, B. Ma, Q. Xu, L. Ma, M. Zhang, G. Pei, and J. Chang (2021). Biomaterials. 264, 120414. https://doi.org/10.1016/j.biomaterials.2020.120414.

    Article  CAS  PubMed  Google Scholar 

  25. S. Balaji, M. K. Mohamed Subarkhan, R. Ramesh, H. Wang, and D. Semeril (2020). Organometallics. 39, 1366–1375. https://doi.org/10.1021/acs.organomet.0c00092.

    Article  CAS  Google Scholar 

  26. Z. Xiong, C. S. Alves, J. Wang, A. Li, J. Liu, M. Shen, J. Rodrigues, H. Tomás, and X. Shi (2019). Acta Biomater. 99, 320–329. https://doi.org/10.1016/j.actbio.2019.09.005.

    Article  CAS  PubMed  Google Scholar 

  27. L. Karner, S. Drechsler, M. Metzger, A. Hacobian, B. Schädl, P. Slezak, J. Grillari, and P. Dungel (2020). Photochem. Photobiol. Sci. 19, 1332–1343. https://doi.org/10.1039/D0PP00108B.

    Article  CAS  PubMed  Google Scholar 

  28. L. K. Aerden, S. Wuite, S. Houthoofd, and G. A. Matricali (2020). Foot Ankle Surg. https://doi.org/10.1016/j.fas.2020.12.010.

    Article  PubMed  Google Scholar 

  29. S. A. G. Lambrechts, T. N. Demidova, M. C. G. Aalders, T. Hasan, and M. R. Hamblin (2005). Photochem. Photobiol. Sci. 4, 503–509. https://doi.org/10.1039/B502125A.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. P. Z. Costa and R. Soares (2013). Life Sci. 92, 1037–1045. https://doi.org/10.1016/j.lfs.2013.04.001.

    Article  CAS  PubMed  Google Scholar 

  31. S. Kargozar, F. Baino, S. Hamzehlou, M. R. Hamblin, and M. Mozafari (2020). Chem. Soc. Rev. https://doi.org/10.1039/C8CS01021H.

  32. T. Biswal (2020). Mater Today Proc. https://doi.org/10.1016/j.matpr.2020.09.628.

    Article  Google Scholar 

  33. X. Liu, Y. Yang, Y. Li, X. Niu, B. Zhao, Y. Wang, C. Bao, Z. Xie, Q. Lin, and L. Zhu (2017). Nanoscale. 9, 4430–4438. https://doi.org/10.1039/C7NR00352H.

    Article  CAS  PubMed  Google Scholar 

  34. P. Aramwit, N. Bang, J. Ratanavaraporn, and S. Ekgasit (2014). Nanoscale Res. Lett. 9, 79. https://doi.org/10.1186/1556-276X-9-79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. M. Shateri-Khalilabad, M. E. Yazdanshenas, and A. Etemadifar (2017). Arab. J. Chem. 10, S2355–S2362. https://doi.org/10.1016/j.arabjc.2013.08.013.

    Article  CAS  Google Scholar 

  36. P. Velmurugan, J. Shim, K.-S. Bang, and B.-T. Oh (2016). J. Photochem. Photobiol. B Biol. 160, 102–109. https://doi.org/10.1016/j.jphotobiol.2016.03.051.

    Article  CAS  Google Scholar 

  37. B. Tang, X. Lin, F. Zou, Y. Fan, D. Li, J. Zhou, W. Chen, and X. Wang (2017). Cellulose. https://doi.org/10.1007/s10570-017-1413-8.

    Article  Google Scholar 

  38. S. Ampawong and P. Aramwit (2017). J. Biomater. Sci. Polym. Ed. 28, 1286–1302. https://doi.org/10.1080/09205063.2017.1321339.

    Article  CAS  PubMed  Google Scholar 

  39. K. Dharmalingam and R. Anandalakshmi (2020). Polymer (Guildf). 202, 122620. https://doi.org/10.1016/j.polymer.2020.122620.

    Article  CAS  Google Scholar 

  40. J. Zhang, C.-L. Liu, J.-J. Liu, X.-H. Bai, Z.-K. Cao, J. Yang, M. Yu, S. Ramakrishna, and Y.-Z. Long (2021). Nanoscale. 13, 6105–6116. https://doi.org/10.1039/D1NR00179E.

    Article  CAS  PubMed  Google Scholar 

  41. H. Buraphaka and W. Putalun (2020). Ind. Crops Prod. 146, 112171. https://doi.org/10.1016/j.indcrop.2020.112171.

    Article  CAS  Google Scholar 

  42. C. B. Chng, D. P. Lau, J. Q. Choo, and C. K. Chui (2012). Acta Biomater. 8, 2835–2844. https://doi.org/10.1016/j.actbio.2012.03.051.

    Article  CAS  PubMed  Google Scholar 

  43. S. Singh, G. Cortes, U. Kumar, T. S. Sakthivel, S. M. Niemiec, A. E. Louiselle, M. Azeltine-Bannerman, C. Zgheib, K. W. Liechty, and S. Seal (2020). Biomater. Sci. 8, 5900–5910. https://doi.org/10.1039/D0BM01325K.

    Article  CAS  PubMed  Google Scholar 

  44. M. G. M. C. Mori da Cunha, B. Arts, L. Hympanova, R. Rynkevic, K. Mackova, A. W. Bosman, P. Y. W. Dankers, and J. Deprest (2020). Acta Biomater. 106, 82–91. https://doi.org/10.1016/j.actbio.2020.01.041.

    Article  CAS  PubMed  Google Scholar 

  45. R. Humar, F. N. Kiefer, H. Berns, T. J. Resink, and E. J. Battegay (2002). FASEB J. 16, 771–780. https://doi.org/10.1096/fj.01-0658com.

    Article  CAS  PubMed  Google Scholar 

  46. A. S. Montaser, M. Rehan, and M. E. El-Naggar (2019). Int. J. Biol. Macromol. 124, 1016–1024. https://doi.org/10.1016/j.ijbiomac.2018.11.252.

    Article  CAS  PubMed  Google Scholar 

  47. G.-Z. Zhou, F.-K. Cao, and S.-W. Du (2015). Biomed. Pharmacother. 71, 128–134. https://doi.org/10.1016/j.biopha.2015.02.025.

    Article  CAS  PubMed  Google Scholar 

  48. A. Belkacemi, M. W. Laschke, M. D. Menger, and V. Flockerzi (2019). J Vis Exp. https://doi.org/10.3791/59608.

    Article  PubMed  Google Scholar 

  49. H. R. Bakhsheshi-Rad, A. F. Ismail, M. Aziz, M. Akbari, Z. Hadisi, M. Omidi, and X. Chen (2020). Int. J. Biol. Macromol. 149, 513–521. https://doi.org/10.1016/j.ijbiomac.2020.01.139.

    Article  CAS  PubMed  Google Scholar 

  50. H. He, Z. Xiao, Y. Zhou, A. Chen, X. Xuan, Y. Li, X. Guo, J. Zheng, J. Xiao, and J. Wu (2019). J. Mater. Chem. B. 7, 1697–1707. https://doi.org/10.1039/C8TB02590H.

    Article  CAS  PubMed  Google Scholar 

  51. H. Liu, C. Wang, C. Li, Y. Qin, Z. Wang, F. Yang, Z. Li, and J. Wang (2018). RSC Adv. 8, 7533–7549. https://doi.org/10.1039/C7RA13510F.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. S. Ampawong, D. Isarangkul, and P. Aramwit (2017). Exp. Cell Res. 358, 301–314. https://doi.org/10.1016/j.yexcr.2017.07.001.

    Article  CAS  PubMed  Google Scholar 

  53. D. Nataraj, P. Aramwit, G. S. Nagananda, and N. Reddy (2020). Eur. Polym. J. 134, 109800. https://doi.org/10.1016/j.eurpolymj.2020.109800.

    Article  CAS  Google Scholar 

  54. T. Siritientong, J. Ratanavaraporn, T. Srichana, and P. Aramwit (2013). Biomed Res. Int. 2013, 904314. https://doi.org/10.1155/2013/904314.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. T. Siritientong, T. Srichana, and P. Aramwit (2011). AAPS PharmSciTech. 12, 771–781. https://doi.org/10.1208/s12249-011-9641-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. P. Aramwit, R. Yamdech, and S. Ampawong (2016). AAPS J. 18, 647–658. https://doi.org/10.1208/s12248-016-9897-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. S. Napavichayanun, S. Ampawong, T. Harnsilpong, A. Angspatt, and P. Aramwit (2018). Arch. Dermatol. Res. 310, 795–805. https://doi.org/10.1007/s00403-018-1871-3.

    Article  PubMed  Google Scholar 

  58. S. Napavichayanun, R. Yamdech, and P. Aramwit (2016). Arch. Dermatol. Res. 308, 123–132. https://doi.org/10.1007/s00403-016-1621-3.

    Article  CAS  PubMed  Google Scholar 

  59. M. K. M. Subarkhan and R. Ramesh (2016). Inorg. Chem. Front. 3, 1245–1255. https://doi.org/10.1039/c6qi00197a.

    Article  CAS  Google Scholar 

  60. M. K. Mohamed Subarkhan, R. Ramesh, and Y. Liu (2016). New J. Chem. 40, 9813–9823. https://doi.org/10.1039/C6NJ01936F.

    Article  CAS  Google Scholar 

  61. M. S. Mohamed Kasim, S. Sundar, and R. Rengan (2018). Inorg Chem. Front. 5, 585–596. https://doi.org/10.1039/c7qi00761b.

    Article  CAS  Google Scholar 

  62. J. Sonamuthu, Y. Cai, H. Liu, M. S. M. Kasim, V. R. Vasanthakumar, B. Pandi, H. Wang, and J. Yao (2020). Int. J. Biol. Macromol. 153, 1058–1069. https://doi.org/10.1016/j.ijbiomac.2019.10.236.

    Article  CAS  PubMed  Google Scholar 

  63. C. Xian, Z. Gu, G. Liu, and J. Wu (2020). Chinese Chem. Lett. 31, 1612–1615.

    Article  CAS  Google Scholar 

  64. A. H. Karaly, W. A. Sarhan, and I. M. El-Sherbiny (2021). Int. J. Biol. Macromol. https://doi.org/10.1016/j.ijbiomac.2021.03.178.

  65. J. Peng, H. Zhao, C. Tu, Z. Xu, L. Ye, L. Zhao, Z. Gu, D. Zhao, J. Zhang, and Z. Feng (2020). Mater. Sci. Eng. C. 116, 111169. https://doi.org/10.1016/j.msec.2020.111169.

    Article  CAS  Google Scholar 

  66. Z. Zhong, Y. Huang, Q. Hu, W. He, B. Duan, X. Yan, Z. Yang, W. Liang, Z. Liu, Z. Peng, Y. Wang, L. Zhang, and Q. Ye (2019). Biomater. Sci. 7, 5247–5257. https://doi.org/10.1039/C9BM00404A.

    Article  CAS  PubMed  Google Scholar 

  67. N. N. Mahmoud, L. M. Al-Kharabsheh, E. A. Khalil, and R. Abu-Dahab (2019). Nanomater. (Basel, Switzerland). https://doi.org/10.3390/nano9081131.

  68. A. P. Rameshbabu, S. Datta, K. Bankoti, E. Subramani, K. Chaudhury, V. Lalzawmliana, S. K. Nandi, and S. Dhara (2018). J. Mater. Chem. B. 6, 6767–6780. https://doi.org/10.1039/C8TB01373J.

    Article  CAS  PubMed  Google Scholar 

  69. D. W. Song, S. H. Kim, H. H. Kim, K. H. Lee, C. S. Ki, and Y. H. Park (2016). Acta Biomater. 39, 146–155. https://doi.org/10.1016/j.actbio.2016.05.008.

    Article  CAS  PubMed  Google Scholar 

  70. M. Khatami, R. S. Varma, N. Zafarnia, H. Yaghoobi, M. Sarani, and V. G. Kumar (2018). Sustain. Chem. Pharm. 10, 9–15. https://doi.org/10.1016/j.scp.2018.08.001.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoyan Hu.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, P., Bian, L. & Hu, X. Synergic Fabrication of Gold Nanoparticles Embedded Dextran/ Silk Sericin Nanomaterials for the Treatment and Care of Wound Healing. J Clust Sci 33, 2147–2156 (2022). https://doi.org/10.1007/s10876-021-02131-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-021-02131-3

Keywords

Navigation