Skip to main content
Log in

Synthesis and Characterization of WO3/GO Nanocomposites for Antimicrobial Properties

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

We report the synthesis of tungsten trioxide (WO3) nanoparticles and its nanocomposite with graphene oxide (GO) by cost-effective and high yield hydrothermal method. The structural pattern and morphology of produced nanoparticles are studied through X-ray diffraction (XRD) and scanning electron microscopy (SEM) respectively. XRD pattern confirms the presence of nanocrystalline hexagonal phase of WO3. SEM results show well-defined rectangular nanorods of WO3, and the GO is in layered structure that has homogeneous and ultra-thin films of graphene. In WO3/GO nanocomposite, the GO sheets are sublimely mixed with WO3 nanoparticles and have changed the morphology of WO3. Furthermore, the diffuse reflectance spectroscopy (DRS) and Fourier transform infrared spectroscopy (FTIR) are performed. The reduction in bandgap of WO3 by the incorporation of GO is observed by DRS that can improve the visible light harvesting rate of WO3. The transmittance peaks of WO3 and the bond of W and C in the nanocomposite are observed in FTIR spectra. Antimicrobial activity of WO3, GO, and WO3/GO nanocomposite by using three different strains (E.coli, Pseudomonas aeruginosa and Candida albicans) is examined. The obtained results demonstrate potential application of WO3, GO, and WO3/GO nanocomposite as antimicrobial agent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. D. Zappa, A. Bertuna, E. Comini, N. Kaur, N. Poli, V. Sberveglieri, and G. Sberveglieri (2017). Metal oxide nanostructures: preparation, characterization and functional applications as chemical sensors. Beilstein J Nanotechnol. 8, 1205–1217.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. T. M. Salama, M. Morsy, R. M. A. Shahba, S. H. Mohamed, and M. M. Mohamed (2019). Synthesis of graphene oxide interspersed in hexagonal WO3 nanorods for high-efficiency visible-light driven photocatalysis and NH3 gas sensing. Front. Chem. 7, 1–14.

    Article  CAS  Google Scholar 

  3. V. R. Buch, A. K. Chawla, and S. K. Rawal (2016). Review on electrochromic property for WO3 thin films using different deposition techniques. Materials Today: Proceeding 3, 1429–1437.

    Google Scholar 

  4. M. Mostafa, S. A. Yousef, W. H. Eisa, M. A. Ewaida, and E. A. Al-Ashkar (2019). WO3 quantum dot: synthesis, characterization and catalytic activity. J. Mol. Struct. 1185, 351–356.

    Article  CAS  Google Scholar 

  5. H. Elbohy, K. M. Reza, S. A. Karim, and Q. Qiao (2018). Creation of oxygen vacancies to activate WO3 for higher efficiency dye-sensitized solar cells. Sustain. Energy Fuels 2, 403–412.

    Article  CAS  Google Scholar 

  6. X. Liu, H. Zhai, P. Wang, Q. Zhang, Z. Wang, Y. Liu, Y. Dai, B. Huang, X. Qin, and X. Zhang (2019). Synthesis of a WO3 photocatalyst with high photocatalytic activity and stability using synergetic internal Fe3+ doping and superficial Pt loading for ethylene degradation under visible-light irradiation. Catal. Sci. Technol. 9, 652–658.

    Article  CAS  Google Scholar 

  7. J. Su, L. Guo, N. Bao, and C. A. Grimes (2011). Nanostructured WO3/BiVO4heterojunction films for efficient photoelectrochemical water splitting. Nano Lett. 11, 1928–1933.

    Article  CAS  PubMed  Google Scholar 

  8. Q. Chen, J. Li, X. Li, K. Huang, B. Zhou, W. Cai, and W. Shangguan (2012). Visible-light responsive photocatalytic fuel cell based on WO3/W photoanode and Cu2O/Cu photocathode for simultaneous wastewater treatment and electricity generation. Environ. Sci. Technol. 46, 11451–11458.

    Article  CAS  PubMed  Google Scholar 

  9. X. Chen, Y. Zhou, Q. Liu, Zh. Li, J. Liu, and Zh. Zou (2012). Ultrathin, single-crystal WO3nanosheets by two-dimensional oriented attachment toward enhanced photocatalystic reduction of CO2 into hydrocarbon fuels under visible light. ACS Appl. Mater. Interfaces 4, 3372–3377.

    Article  CAS  PubMed  Google Scholar 

  10. P. Wang, B. Huang, X. Qin, X. Zhang, Y. Dai, and M. H. Whangbo (2009). Ag/AgBr/WO3 •H2O: visible-light photocatalyst for bacteria destruction. Inorg. Chem. 48, 10697–10702.

    Article  CAS  PubMed  Google Scholar 

  11. G. Duan, L. Chen, Z. Jing, P. D. Luna, L. Wen, L. Zhang, L. Zhao, J. Xu, Z. Li, Z. Yang, and R. Zhou (2019). Robust antibacterial activity of tungsten oxide (WO3-x) nanodots. Chem. Res. Toxicol. 32, 1357–1366.

    Article  CAS  PubMed  Google Scholar 

  12. S. Sonia, P. S. Kumar, D. Mangalaraj, N. Ponpandiana, and C. Viswanathan (2013). Influence of growth and photocatalytic properties of copper selenide (CuSe) nanoparticles using reflux condensation method. Appl. Surf. Sci. 283, 802–807.

    Article  CAS  Google Scholar 

  13. F. Deng, X. Pei, Y. Luo, X. Luo, D. D. Dionysiou, S. Wu, and S. Luo (2016). Fabrication of hierarchically porous reduced graphene oxide/ SnIn4S8 composites by a low-temperature co-precipitation strategy and their excellent visible-light photocatalytic mineralization performance. Catalysts 6, 113–119.

    Article  CAS  Google Scholar 

  14. S. Sajjad, M. Khan, S. A. K. Leghari, N. A. Ryma, and S. A. Farooqi (2018). Potential visible WO3/GO composite photocatalyst. Int. J. Appl. Ceram. Technol. 16, 1–10.

    Google Scholar 

  15. P. Kumar, P. Huo, R. Zhang, and B. Liu (2019). Antibacterial properties of graphene-based nanomaterials. Nanomaterials 9, 737.

    Article  CAS  PubMed Central  Google Scholar 

  16. T. A. Saleh and V. K. Gupta (2011). Functionalization of tungsten oxide into MWCNT and its application for sunlight-induced degradation of rhodamine B. J. Colloid Interface Sci. 362, 337–344.

    Article  CAS  PubMed  Google Scholar 

  17. W. Hu, C. Peng, W. Luo, M. Lv, X. Li, D. Li, Q. Huang, and C. Fan (2010). Graphene-based antibacterial paper. ACS Nano 4, 4317–4323.

    Article  CAS  PubMed  Google Scholar 

  18. M. Muniyalakshmi, K. Sethuraman, and D. Silambarasan (2020). Synthesis and characterization of graphene oxide nanosheets. Materials Today: Proceedings 21, 408–410.

    CAS  Google Scholar 

  19. S. Pei and H.-M. Cheng (2012). The reduction of graphene oxide. Carbon 50, 3210–3228.

    Article  CAS  Google Scholar 

  20. A. Bagri, C. Mattevi, M. Acik, Y. J. Chabal, M. Chhowalla, and V. B. Shenoy (2010). Structural evolution during the reduction of chemically derived graphene oxide. Nat. Chem. 2, 581–587.

    Article  CAS  PubMed  Google Scholar 

  21. X. Li, F. Li, Z. Gao, and L. Fang (2015). Toxicology of graphene oxide nanosheets against paecilomyces catenlannulatus. Bull. Environ. Contam. Toxicol. 95, 25–30.

    Article  CAS  PubMed  Google Scholar 

  22. X. Wang, X. Liu, and H. Han (2013). Evaluation of antibacterial effects of carbon nanomaterials against copper-resistant Ralstonia solanacearum. Colloids Surf. B Biointerfaces 103, 136–142.

    Article  CAS  PubMed  Google Scholar 

  23. S. Jayanthi, N. K. Eswar, S. A. Singh, K. Chatterjee, G. Madras, and A. Sood (2016). Macroporous three-dimensional graphene oxide foams for dye adsorption and antibacterial applications. RSC Adv. 6, 1231–1242.

    Article  CAS  Google Scholar 

  24. S. R. V. Castrillón, F. O. Perreault, A. F. D. Faria, and M. Elimelech (2015). Interaction of graphene oxide with bacterial cell membranes: Insights from force spectroscopy. Environ. Sci. Technol. Lett. 2, 112–117.

    Article  CAS  Google Scholar 

  25. J. Zhao, Z. Wang, J. C. White, and B. Xing (2014). Graphene in the aquatic environment: Adsorption, dispersion, toxicity and transformation. Environ. Sci. Technol. 48, 9995–10009.

    Article  CAS  PubMed  Google Scholar 

  26. M. S. Khan, H. N. Abdelhamid, and H. F. Wu (2015). Near infrared (NIR) laser mediated surface activation of graphene oxide nanoflakes for effcient antibacterial, antifungal and wound healing treatment. Colloids Surf. B Bio interfaces 127, 281–291.

    Article  CAS  Google Scholar 

  27. I. Sengupta, P. Bhattacharya, M. Talukdar, S. Neogi, S. K. Pal, and S. Chakraborty (2019). Bactericidal effect of grapheme oxide and reduced graphene oxide: Influence of shape of bacteria. Colloid Interface Sci. Commun 28, 60–68.

    Article  CAS  Google Scholar 

  28. T. N. Kovács, I. E. Lukács, A. Szabó, K. Hernadi, T. Igricz, K. László, I. M. Szilágyi, and G. Pokol (2020). Effect of pH in the hydrothermal preparation of monoclinic tungsten oxide. J. Solid State Chem 281, 121044.

    Article  CAS  Google Scholar 

  29. A. L. Patterson (1939). The scherrer formula for X-ray particle size determination. Phys. Rev. 56, 978–982.

    Article  CAS  Google Scholar 

  30. P. Kubelka and F. Munk (1931). A contribution to the optics of pigments. Z. Tech. Phys. 12, 593–601.

    Google Scholar 

  31. R. S. Vemuri, M. H. Engelhard, and C. V. Ramana (2012). Correlation between surface chemistry, density, and band gap in nanocrystalline WO3 thin films. ACS Appl. Mater. Interfaces 4, 1371–1377.

    Article  CAS  PubMed  Google Scholar 

  32. I. Ahmad, M. Usman, T.-K. Zhao, S. Qayum, I. Mahmood, A. Mahmood, A. Diallo, C. Obayi, F. I. Ezema, and M. Maaza (2020). Bandgap engineering of TiO2 nanoparticles through MeV Cu ions irradiation. Arab. J. Chem. 13, 3344.

    Article  CAS  Google Scholar 

  33. K.-ul Haq, M. Usman, T. Iqbal, R. Y. Khosa, I. Ahmad, J. Luo, and T.-K. Zhao (2021). Carbon ion irradiation induced structural, optical and electrical effects in TiO2 nanoparticles. Radiat. Phys. Chem. 180, 109297.

    Article  CAS  Google Scholar 

  34. L. Gan, L. Xu, S. Shang, X. Zhou, and L. Meng (2016). Visible light induced methylene blue dye degradation photo-catalyzed by WO3/grapheme nanocomposites and the mechanism. Ceramics International 42, 15235–15241.

    Article  CAS  Google Scholar 

  35. V. B. Kumar and D. Mohanta (2011). Formation of nanoscale tungsten oxide structures and colouration characteristics. Bull. Mater. Sci. 34, 435–442.

    Article  CAS  Google Scholar 

  36. T. Thilagavathi, D. Venugopal, and E. Gobichettipalayam (2018). Synthesis and characterization of WO3 nanoparticles for photocatalytic degradation of methylene blue dye. Int. J. Res. Eng. Appl. Manag. 4, 317–320.

    Google Scholar 

  37. K. Kalantar-zadeh, A. Vijayaraghavan, M. H. Ham, H. Zheng, M. Breedon, and M. S. Strano (2010). Synthesis of atomically thin WO3 sheets from hydrated tungsten trioxide. Chem. Mater. 22, 5660–5666.

    Article  CAS  Google Scholar 

  38. G. Jeevitha, R. Abhinayaa, D. Mangalaraj, and N. Ponpandian (2018). Tungsten oxide-graphene oxide (WO3-GO) nanocomposite as an efficient photocatalyst, antibacterial and anticancer agent. J. Phys. Chem. Solids 116, 137–147.

    Article  CAS  Google Scholar 

  39. Y. L. Ying, S. Y. Pung, S. Sreekantan, Y. F. Yee, M. T. Ong, and Y. F. Pung (2019). Structural and antibacterial properties of WO3/ZnO hybridparticles against pathogenic bacteria. Materials Today: Proceedings 17, 1008–1017.

    CAS  Google Scholar 

  40. S. L. Lima, A. L. Colombo, and J. N. A. Junior (2019). Fungal cell wall: emerging antifungals and drug resistance. Front. Microbiol. 10, 2573.

    Article  PubMed  PubMed Central  Google Scholar 

  41. S. Ganguly, P. Das, M. Bose, T. K. Das, S. Mondal, A. K. Das, and N. C. Das (2017). Sonochemical green reduction to prepare Ag nanoparticles decorated graphene sheets for catalytic performance and antibacterial application. Ultrason. Sonochem. 39, 577–588.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rabia Yasmin Khosa or Muhammad Usman.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muzaffar, T., Khosa, R.Y., Iftikhar, U. et al. Synthesis and Characterization of WO3/GO Nanocomposites for Antimicrobial Properties. J Clust Sci 33, 1987–1996 (2022). https://doi.org/10.1007/s10876-021-02116-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-021-02116-2

Keywords

Navigation