Skip to main content
Log in

Effects of Sonication Period on Colloidal Stability and Thermal Conductivity of SiO2–Water Nanofluid: An Experimental Investigation

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

The objective of the present work is to analyze the consequences of the sonication period on the colloidal stability and thermal conductivity of SiO2–water nanofluid. Ultrasonication assisted two-step method was applied to prepare SiO2–water nanofluid at two different concentrations of 0.5 and 1 wt% without any surfactant. The sonication period varied from 1 to 3 h. Particle size was analysed by direct light scattering (DLS). Zeta potential analysis and light absorbance test were performed to check the colloidal stability of nanofluids. The thermal conductivity of nanofluid was measured over the temperature range of 25–60 °C. The obtained results indicate that increasing sonication time is crucial for the enhacement in stability and thermal conductivity of nanofluid. With increasing temperature, the thermal conductivity of nanofluids also increased. Moreover, at lower temperature, sonication plays a dominant role on thermal conductivity enhacement in nanofluids. The investigation concludes that a minimum 2.5 h of sonication is required for the better performance of nanofluids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

N A :

Avogadro number, 6.023 × 1023 (per mol)

k :

Thermal conductivity (W/mK)

K B :

Boltzmann constant, 1.3807 × 10−23 \(\left( {\frac{J}{K}} \right)\)

M :

Molar mass (kg/mole)

V :

Molar volume (m3/mol)

\(n\) :

Frequency (Hz)

\(w\) :

Weight (kg)

\(T\) :

Temperature (°C)

\(U\) :

Uncertainity (%)

\(\phi\) :

Weight concentration (%)

\({\phi }_{v}\) :

Volume concentration (%)

\(\lambda\) :

Wave length (m)

\(\chi\) :

Mole fractions (−)

\(\rho\) :

Density (kg/m3)

bf:

Basefluid

np:

Nanoparticles

nf:

Nanofluid

References

  1. S. K. Das, S. U. Choi, W. Yu, and T. Pradeep, Nanofluids: Science and Technology (John Wiley & Sons, 2007).

  2. I. Mahbubul, I. Shahrul, S. Khaleduzzaman, R. Saidur, M. Amalina, and A. Turgut (2015). Experimental investigation on effect of ultrasonication duration on colloidal dispersion and thermophysical properties of alumina–water nanofluid. Int. J. Heat Mass Transf. 88, 73–81.

    Article  CAS  Google Scholar 

  3. V. S. Nguyen, D. Rouxel, R. Hadji, B. Vincent, and Y. Fort (2011). Effect of ultrasonication and dispersion stability on the cluster size of alumina nanoscale particles in aqueous solutions. Ultrason. Sonochem. 18 (1), 382–388. https://doi.org/10.1016/j.ultsonch.2010.07.003.

    Article  CAS  PubMed  Google Scholar 

  4. R. A. Farade, N. I. A. Wahab, D.-E.A. Mansour, N. B. Azis, J. B. Jasni, V. Veerasamy, M. Thirumeni, A. X. R. Irudayaraj, and A. S. Murthy (2021). Investigation of the Effect of Sonication Time on Dispersion Stability, Dielectric Properties, and Heat Transfer of Graphene Based Green Nanofluids. IEEE Access 9, 50607–50623.

    Article  Google Scholar 

  5. A. Afzal, I. Nawfal, I. M. Mahbubul, and S. S. Kumbar (2019). An overview on the effect of ultrasonication duration on different properties of nanofluids. J. Therm. Anal. Calorim. 135 (1), 393–418. https://doi.org/10.1007/s10973-018-7144-8.

    Article  CAS  Google Scholar 

  6. R. Choudhary, D. Khurana, A. Kumar, and S. Subudhi (2017). Stability analysis of Al2O3/water nanofluids. J. Exp. Nanosci. 12 (1), 140–151. https://doi.org/10.1080/17458080.2017.1285445.

    Article  CAS  Google Scholar 

  7. K. Kwak and C. Kim (2005). Viscosity and thermal conductivity of copper oxide nanofluid dispersed in ethylene glycol. Korea-Aust. Rheol. J. 17 (2), 35–40.

    Google Scholar 

  8. J.-H. Lee, K. S. Hwang, S. P. Jang, B. H. Lee, J. H. Kim, S. U. S. Choi, and C. J. Choi (2008). Effective viscosities and thermal conductivities of aqueous nanofluids containing low volume concentrations of Al2O3 nanoparticles. Int. J. Heat Mass Transf. 51 (11), 2651–2656. https://doi.org/10.1016/j.ijheatmasstransfer.2007.10.026.

    Article  CAS  Google Scholar 

  9. P. Garg, J. L. Alvarado, C. Marsh, T. A. Carlson, D. A. Kessler, and K. Annamalai (2009). An experimental study on the effect of ultrasonication on viscosity and heat transfer performance of multi-wall carbon nanotube-based aqueous nanofluids. Int. J. Heat Mass Transf. 52 (21), 5090–5101. https://doi.org/10.1016/j.ijheatmasstransfer.2009.04.029.

    Article  CAS  Google Scholar 

  10. H. Zhu, C. Li, D. Wu, C. Zhang, and Y. Yin (2010). Preparation, characterization, viscosity and thermal conductivity of CaCO3 aqueous nanofluids. Sci. China Technol. Sci. 53 (2), 360–368. https://doi.org/10.1007/s11431-010-0032-5.

    Article  CAS  Google Scholar 

  11. J. Yu, N. Grossiord, C. E. Koning, and J. Loos (2007). Controlling the dispersion of multi-wall carbon nanotubes in aqueous surfactant solution. Carbon 45 (3), 618–623. https://doi.org/10.1016/j.carbon.2006.10.010.

    Article  CAS  Google Scholar 

  12. M. E. Kabir, M. C. Saha, and S. Jeelani (2007). Effect of ultrasound sonication in carbon nanofibers/polyurethane foam composite. Mater. Sci. Eng.: A 459 (1), 111–116. https://doi.org/10.1016/j.msea.2007.01.031.

    Article  CAS  Google Scholar 

  13. H. Yu, S. Hermann, S. E. Schulz, T. Gessner, Z. Dong, and W. J. Li (2012). Optimizing sonication parameters for dispersion of single-walled carbon nanotubes. Chem. Phys. 408, 11–16. https://doi.org/10.1016/j.chemphys.2012.08.020.

    Article  CAS  Google Scholar 

  14. H. M. Ali (2020). Recent advancements in PV cooling and efficiency enhancement integrating phase change materials based systems – A comprehensive review. Sol. Energy 197, 163–198. https://doi.org/10.1016/j.solener.2019.11.075.

    Article  Google Scholar 

  15. G. Sriharan, S. Harikrishnan, and H. M. Ali (2021). Experimental investigation on the effectiveness of MHTHS using different metal oxide-based nanofluids. J. Therm. Anal. Calorim. 143 (2), 1251–1260. https://doi.org/10.1007/s10973-020-09779-5.

    Article  CAS  Google Scholar 

  16. H. A. Tariq, M. Anwar, A. Malik, and H. M. Ali (2020). Hydro-thermal performance of normal-channel facile heat sink using TiO2-H2O mixture (Rutile–Anatase) nanofluids for microprocessor cooling. J. Therm. Anal. Calorim.. https://doi.org/10.1007/s10973-020-09838-x.

    Article  Google Scholar 

  17. M. Ghaneifar, A. Raisi, H. M. Ali, and P. Talebizadehsardari (2021). Mixed convection heat transfer of AL2O3 nanofluid in a horizontal channel subjected with two heat sources. J. Therm. Anal. Calorim. 143 (3), 2761–2774. https://doi.org/10.1007/s10973-020-09887-2.

    Article  CAS  Google Scholar 

  18. A. A. Ahmadi, M. Arabbeiki, H. M. Ali, M. Goodarzi, and M. R. Safaei (2020). Configuration and optimization of a minichannel using water–alumina nanofluid by non-dominated sorting genetic algorithm and response surface method. Nanomaterials 10 (5). https://doi.org/10.3390/nano10050901.

  19. Z. Chen, A. Shahsavar, A. A. A. A. Al-Rashed, and M. Afrand (2020). The impact of sonication and stirring durations on the thermal conductivity of alumina-liquid paraffin nanofluid: an experimental assessment. Powder Technol. 360, 1134–1142.

    Article  CAS  Google Scholar 

  20. A. Asadi, F. Pourfattah, I. M. Szilágyi, M. Afrand, G. Żyła, H. S. Ahn, S. Wongwises, H. M. Nguyen, A. Arabkoohsar, and O. Mahian (2019). Effect of sonication characteristics on stability, thermophysical properties, and heat transfer of nanofluids: A comprehensive review. Ultrason. Sonochem. 58, 104701.

    Article  CAS  Google Scholar 

  21. Y. Li, R. Kalbasi, Q. Nguyen, and M. Afrand (2020). Effects of sonication duration and nanoparticles concentration on thermal conductivity of silica-ethylene glycol nanofluid under different temperatures: an experimental study. Powder Technol. 367, 464–473.

    Article  CAS  Google Scholar 

  22. M. Kole and T. K. Dey (2012). Effect of prolonged ultrasonication on the thermal conductivity of ZnO–ethylene glycol nanofluids. Thermochim. Acta 535, 58–65. https://doi.org/10.1016/j.tca.2012.02.016.

    Article  CAS  Google Scholar 

  23. A. Amrollahi, A. A. Hamidi, and A. M. Rashidi (2008). The effects of temperature, volume fraction and vibration time on the thermo-physical properties of a carbon nanotube suspension (carbon nanofluid). Nanotechnology 19 (31), 315701. https://doi.org/10.1088/0957-4484/19/31/315701.

    Article  CAS  PubMed  Google Scholar 

  24. B. Buonomo, O. Manca, L. Marinelli, and S. Nardini (2015). Effect of temperature and sonication time on nanofluid thermal conductivity measurements by nano-flash method. Appl. Therm. Eng. 91, 181–190.

    Article  CAS  Google Scholar 

  25. S. Mukherjee, P. C. Mishra, and P. Chaudhuri (2018). Stability of Heat Transfer Nanofluids – A Review. ChemBioEng Rev. 5 (5), 312–333. https://doi.org/10.1002/cben.201800008.

    Article  CAS  Google Scholar 

  26. Y. Hwang, J.-K. Lee, J.-K. Lee, Y.-M. Jeong, S.-i Cheong, Y.-C. Ahn, and S. H. Kim (2008). Production and dispersion stability of nanoparticles in nanofluids. Powder Technol. 186 (2), 145–153. https://doi.org/10.1016/j.powtec.2007.11.020.

    Article  CAS  Google Scholar 

  27. R. M. Mostafizur, R. Saidur, A. R. A. Aziz, and M. H. U. Bhuiyan, Investigation on stability and density of methanol based TiO2 nanofluids. In, 2015 (IOP Publishing), p. 012057.

  28. M. Nabeel Rashin and J. Hemalatha (2014). A novel ultrasonic approach to determine thermal conductivity in CuO-ethylene glycol nanofluids. J. Mol. Liq. 197, 257–262. https://doi.org/10.1016/j.molliq.2014.05.024.

    Article  CAS  Google Scholar 

  29. WebBook N (2016). Thermophysical properties of fluid systems. Avaliable Online: http://webbook.nist.gov/chemistry/fluid/. (access on 18 January 2015).

  30. R. Sadeghi, S. G. Etemad, E. Keshavarzi, and M. Haghshenasfard (2015). Investigation of alumina nanofluid stability by UV–vis spectrum. Microfluid. Nanofluid. 18 (5), 1023–1030. https://doi.org/10.1007/s10404-014-1491-y.

    Article  CAS  Google Scholar 

  31. J. Shah, M. Ranjan, V. Davariya, S. K. Gupta, and Y. Sonvane (2017). Temperature-dependent thermal conductivity and viscosity of synthesized α-alumina nanofluids. Appl. Nanosci. 7 (8), 803–813. https://doi.org/10.1007/s13204-017-0594-7.

    Article  CAS  Google Scholar 

  32. M. Kılıç, M. Yavuz, and İH. Yılmaz (2018). Numerical investigation of combined effect of nanofluids and impinging jets on heated surface. Int. Adv. Res. Eng. J. 2 (1), 14–19.

    Google Scholar 

Download references

Acknowledgements

The authors cordially acknowledge the financial support provided by DAE-BRNS for their financial support. We are also thankful to the School of Mechanical Engineering, KIIT Deemed to be University for supporting us to carry out the research work.

Funding

Funding was provided by Board of Research in Nuclear Sciences (Grant No. 39/14/04/2017-BRNS/34301).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Purna Chandra Mishra.

Ethics declarations

Conflict of interest

The authors do not share any conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mukherjee, S., Mishra, P.C., Chakrabarty, S. et al. Effects of Sonication Period on Colloidal Stability and Thermal Conductivity of SiO2–Water Nanofluid: An Experimental Investigation. J Clust Sci 33, 1763–1771 (2022). https://doi.org/10.1007/s10876-021-02100-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-021-02100-w

Keywords

Navigation