Skip to main content

Advertisement

Log in

Dual-Targeting of Doxorubicin and Chlorine e6 Co-Delivery Based on Small-Size Nanocomposite for the Synergetic Imaging and Therapy

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

It is an urgent need to develop multifunctional agents with integrated accurate diagnostics and treatment for conquering intrinsic limitations of traditional cancer therapies. Herein, a small-size nanocomposite consisting of chlorine e6-integrated gold nanoclusters, hyaluronic acid, doxorubicin and folic acid was synthesized by a simple and mild method. The chlorine e6-integrated gold nanoclusters (Au:Ce6 NCs) were synthesized in an one-step for biological fluorescence imaging and photodynamic therapy. The hyaluronic acid-modified Au:Ce6 (Au:Ce6@HA) can not only act as drug carrier to delivery doxorubicin but increase the cellular selectively target. The folic acid-conjugated Au:Ce6@HA:DOX (Au:Ce6@HA:DOX@FA) was fabricated as a double targeted and pH-responsive drug delivery system for controlling the release of doxorubicin for tumor chemotherapy. The prepared Au:Ce6@HA:DOX@FA nanocomposite possessed small size and high drug encapsulation and loading efficiency. The nanocomposite exhibited good biocompatibility, colloidal stability and potostability, and high cumulative release rate in the acidic microenvironments. The fluorescence microscopy of in vitro confirmed the enhanced cellular uptake of Au:Ce6@HA:DOX@FA for fluorescence imaging. Importantly, the nanocomposite exhibited remarkable mortality of cancer cells under laser irradiation by synergistic chemotherapy and PDT. Together, this study demonstrates the designed small-sized nanocomposite could be used as a promising theranostic agent with dual-responsive tumor targeting capability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. W. Zhang, Y. Li, L. J. Xu, D. Wang, J. Long, M. Zhang, Y. Wang, Y. Lai, and X.-J. Liang (2020). Near-infrared-absorbing conjugated polymer nanoparticles loaded with doxorubicin for combinatorial photothermal-chemotherapy of cancer. ACS Appl. Polym. Mater. 2, 4180–4187.

    Article  CAS  Google Scholar 

  2. M. Miyazaki, E. Yuba, H. Hayashi, A. Harada, and K. Kono (2018). Hyaluronic acid-based pH-sensitive polymer-modified liposomes for cell-specific intracellular drug delivery systems. Bioconjugate Chem. 29, 44–55.

    Article  CAS  Google Scholar 

  3. Y. Barenholz (2012). Doxil®-the first FDA-approved nano-drug: lessons learned. J. Controlled Release 160, 117–134.

    Article  CAS  Google Scholar 

  4. Y. Jin, X. Ma, S. Feng, X. Liang, Z. Dai, J. Tian, and X. Yue (2015). Hyaluronic acid modified tantalum oxide nanoparticles conjugating doxorubicin for targeted cancer theranostics. Bioconjugate Chem. 26, 2530–2541.

    Article  CAS  Google Scholar 

  5. D. E. J. G. J. Dolmans, F. Dai, and R. K. Jain (2003). Photodynamic therapy for cancer. Nat. Rev. Cancer 3, 380–387.

    Article  CAS  PubMed  Google Scholar 

  6. A. Kamkaew, S. H. Lim, H. B. Lee, L. V. Kiew, L. Y. Chung, and K. Burgess (2013). BODIPY dyes in photodynamic therapy. Chem. Soc. Rev. 42, 77–88.

    Article  CAS  PubMed  Google Scholar 

  7. B. Du, S. Jia, Q. H. Wang, X. Y. Ding, Y. Liu, H. C. Yao, and J. Zhou (2018). A self-targeting, dual ROS/pH-responsive apoferritin nanocage for spatiotemporally controlled drug delivery to breast cancer. Biomacromolecules 19, 1026–1036.

    Article  CAS  PubMed  Google Scholar 

  8. B. Gu, W. B. Wu, G. X. Xu, G. X. Feng, F. Yin, P. H. J. Chong, J. Qu, K.-T. Yony, and B. Liu (2017). Precise two-photon photodynamic therapy using an efficient photosensitizer with aggregation-induced emission characteristics. Adv. Mater. 29, 1–7.

    CAS  Google Scholar 

  9. J. Zhu, T. Xiao, J. Zhang, H. Che, Y. Shi, X. Shi, and J. C. M. van Hest (2020). Surface-charge-switchable nanoclusters for magnetic resonance imaging-guided and glutathione depletion-enhanced photodynamic therapy. ACS Nano 14, 11225–11237.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. F. Jin, J. Qi, M. Zhu, D. Liu, Y. You, G. Shu, Y. Du, J. Wang, H. Yu, M. Sun, X. Xu, Q. Shen, X. Ying, J. Ji, and Y. Du (2020). NIR-triggered sequentially responsive nanocarriers amplified cascade synergistic effect of chemo-photodynamic therapy with inspired antitumor immunity. ACS Appl. Mater. Inter. 12, 32372–32387.

    Article  CAS  Google Scholar 

  11. D. Zhang, M. Wu, Y. Zeng, L. Wu, Q. Wang, X. Han, X. Liu, and J. Liu (2015). Chlorin e6 conjugated poly(dopamine) nanospheres as PDT/PTT dual-modal therapeutic agents for enhanced cancer therapy. ACS Appl. Mater. Interfaces 7, 8176–8187.

    Article  CAS  PubMed  Google Scholar 

  12. J. Liang, J. Liu, X. Jin, S. Yao, B. Chen, Q. Huang, J. Hu, J. Wan, Z. Hu, and B. Wang (2020). Versatile nanoplatform loaded with doxorubicin and graphene quantum dots/methylene blue for drug delivery and chemophotothermal/photodynamic synergetic cancer therapy. ACS Appl. Bio Mater. 3, 7122–7132.

    Article  CAS  PubMed  Google Scholar 

  13. L. Zhu, D. Gao, L. Xie, Y. Dai, and Q. Zhao (2020). NIR II-excited and pH-responsive ultrasmall nanoplatform for deep optical tissue and drug delivery penetration and effective cancer chemophototherapy. Mol. Pharmaceut. 17, 3720–3729.

    Article  CAS  Google Scholar 

  14. H. Liu, X. Lv, J. Qian, H. Li, Y. Qian, X. Wang, X. Meng, W. Lin, and H. Wang (2020). Graphitic carbon nitride quantum dots embedded in carbon nanosheets for near-infrared imaging-guided combined photo-chemotherapy. ACS Nano 14, 13304–13315.

    Article  CAS  PubMed  Google Scholar 

  15. L. Cheng, A. Kamkaew, H. Sun, D. Jiang, H. F. Valdovinos, H. Gong, C. G. England, S. Goel, T. E. Barnhart, and W. Cai (2016). Dual-modality positron emission tomography/optical image-guided photodynamic cancer therapy with chlorin e6-containing nanomicelles. ACS Nano 10, 7721–7730.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. R. W. Guo, G. Yang, Z. J. Feng, Y. J. Zhu, P. X. Yang, H. J. Song, W. W. Wang, P. S. Huang, and J. H. Zhang (2018). Glutathione-induced amino-activatable micellar photosensitization platform for synergistic redox modulation and photodynamic therapy. Biomater. Sci. 6, 1238–1249.

    Article  CAS  PubMed  Google Scholar 

  17. J. H. Choi, H. J. Kim, and Y. D. Choi (2015). Theranostic nanoparticles for enzyme-activatable fluorescence imaging and photodynamic/chemo dual therapy of triple-negative breast cancer. Quant. Imag. Med. Surg. 5, 656–664.

    Google Scholar 

  18. W. Park, S. J. Park, and K. Na (2012). The controlled photoactivity of nanoparticles derived from ionic interactions between a water soluble polymeric photosensitizer and polysaccharide quencher. Biomaterials 32, 8261–8270.

    Article  CAS  Google Scholar 

  19. Y. Zhang, F. Fang, L. Li, and J. Zhang (2020). Self-assembled organic nanomaterials for drug delivery, bioimaging, and cancer therapy. ACS Biomater. Sci. Eng. 6, 4816–4833.

    Article  CAS  PubMed  Google Scholar 

  20. M. Nath (2016). Multifunctional magnetic nanomaterials for diverse applications. Nanotechnology 2, 139–166.

    Google Scholar 

  21. Y. Mantri and J. V. Jokerst (2020). Engineering plasmonic nanoparticles for enhanced photoacoustic imaging. ACS Nano 14, 9408–9422.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. N. Nakatsuka, M. M. Hasani-Sadrabadi, K. M. Cheung, T. D. Young, G. Bahlakeh, A. Moshaverinia, P. S. Weiss, and A. M. Andrews (2018). Polyserotonin nanoparticles as multifunctional materials for biomedical applications. ACS Nano 12, 4761–4774.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. L. Haddick, W. Zhang, S. Reinhard, K. Möller, H. Engelke, E. Wagner, and T. Bein (2020). Particle-size-dependent delivery of antitumoral miRNA using targeted mesopcorous silica nanoparticles. Pharmaceutics 12, 505–520.

    Article  CAS  PubMed Central  Google Scholar 

  24. A. Baeza and M. Vallet-Regí (2020). Mesoporous silica nanoparticles as theranostic antitumoral nanomedicines. Pharmaceutics 12, 957–970.

    Article  CAS  PubMed Central  Google Scholar 

  25. S. D. Hettiarachchi, R. M. Graham, K. J. Mintz, Y. Zhou, S. Vanni, Z. Peng, and R. M. Leblanc (2019). Triple conjugated carbon dots as a nano-drug delivery model for glioblastoma brain tumors. Nanoscale 11, 6192–6205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Z. Cai, Y. Zhan, Z. He, L.-P. Jiang, and J.-J. Jiang (2020). NIR-triggered chemo-photothermal therapy by thermosensitive gold nanostar@mesoporous silica@liposome-composited drug delivery systems. ACS Appl. Bio Mater. 3, 5322–5330.

    Article  CAS  PubMed  Google Scholar 

  27. Y. Han, J. Zhou, Y. Hu, Z. Lin, Y. Ma, J. J. Richardson, and F. Caruso (2020). Polyphenol-based nanoparticles for intracellular protein delivery via competing supramolecular interactions. ACS Nano 14, 12972–12981.

    Article  CAS  PubMed  Google Scholar 

  28. J. Huang, Y. Li, A. Orza, Q. Lu, P. Guo, L. Wang, L. Yang, and H. Mao (2016). Magnetic nanoparticle facilitated drug delivery for cancer therapy with targeted and image-guided approaches. Adv. Funct. Mater. 26, 3818–3836.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. G. Ravichandran and A. K. Rengan (2020). Aptamer-mediated nanotheranostics for cancer treatment: a review. ACS Appl. Nano Mater. 3, 9542–9559.

    Article  CAS  Google Scholar 

  30. D. Babikova, R. Kalinova, D. Momekova, I. Ugrinova, G. Momekov, and I. Dimitrov (2019). Multifunctional polymer nanocarrier for efficient targeted cellular and subcellular anticancer drug delivery. ACS Biomater. Sci. Eng. 5, 2271–2283.

    Article  CAS  PubMed  Google Scholar 

  31. Y. Xuan, R. Y. Zhang, D. H. Zhao, X. S. Zhang, J. An, K. Cheng, X. L. Hou, X. L. Song, Y. D. Zhao, and X. Q. Yang (2019). Ultrafast synthesis of gold nanosphere cluster coated by graphene quantum dot for active targeting PA/CT imaging and near-infrared laser pH-triggered chemo-photothermal synergistic tumor therapy. Chem. Eng. J. 369, 87–99.

    Article  CAS  Google Scholar 

  32. J. Liu, M. Yu, C. Zhou, S. Yang, X. Ning, and J. Zheng (2013). Passive tumor targeting of renal-clearable luminescent gold nanoparticles: long tumor retention and fast normal tissue clearance. J. Am. Chem. Soc. 135, 4978–4981.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. C. Zhang, C. Li, Y. Liu, J. Zhang, C. Bao, S. Liang, Q. Wang, Y. Yang, H. Fu, K. Wang, and D. Cui (2015). Gold nanoclusters-based nanoprobes for simultaneous fluorescence imaging and targeted photodynamic therapy with superior penetration and retention behavior in tumors. Adv. Funct. Mater. 25, 1314–1325.

    Article  CAS  Google Scholar 

  34. S. Zhu, X. Wang, Y. Cong, and L. Li (2020). Regulating the optical properties of gold nanoclusters for biological applications. ACS Omega 5, 22702–22707.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. N. Li, T. Li, C. Liu, S. Ye, J. Liang, and H. Han (2016). Folic acid-targeted and cell penetrating peptide-mediated theranostic nanoplatform for high-efficiency tri-modal imaging-guided synergistic anticancer phototherapy. J. Biomed. Nanotechnol. 12, 878–890.

    Article  CAS  PubMed  Google Scholar 

  36. X. Zhang, M. Chen, Y. Zhang, Y. Hou, Y. Wu, M. Yao, L. Li, L. Shi, T. Liu, B. Hu, H. Zhao, H. Li, J. Shi, B. Jia, and F. Wang (2020). Monoclonal-antibody-templated gold nanoclusters for HER2 receptors targeted fluorescence imaging. ACS Appl. Bio Mater. 3, 7061–7066.

    Article  CAS  PubMed  Google Scholar 

  37. A. Yadav, N. C. Verma, C. Rao, P. M. Mishra, A. Jaiswal, and C. K. Nandi (2020). Bovine serum albumin-conjugated red emissive gold nanocluster as a fluorescent nanoprobe for super-resolution microscopy. J. Phys. Chem. Lett. 11, 5741–5748.

    Article  CAS  PubMed  Google Scholar 

  38. M. Turner, V. B. Golovko, O. P. Vaughan, P. Abdulkin, A. Berenguer-Murcia, M. S. Tikhov, B. F. Johnson, and R. M. Lambert (2008). Selective oxidation with dioxygen by gold nanoparticle catalysts derived from 55-atom clusters. Nature 454, 981–983.

    Article  CAS  PubMed  Google Scholar 

  39. N. Lewinski, V. Colvin, and R. Drezek (2008). Cytotoxicity of nanoparticles. Small 4, 26–49.

    Article  CAS  PubMed  Google Scholar 

  40. C. Y. Tay, Y. Yu, M. I. Setyawati, J. Xie, and D. T. Leong (2014). Presentation matters: identity of gold nanocluster capping agent governs intracellular uptake and cell metabolism. Nano Res. 7, 805–815.

    Article  CAS  Google Scholar 

  41. K. Zheng, M. I. Setyawati, D. T. Leong, and J. Xie (2017). Antimicrobial gold nanoclusters. ACS Nano 11, 6904–6910.

    Article  CAS  PubMed  Google Scholar 

  42. R. Y. Zhu, H. He, Y. Liu, D. S. Cao, J. Yan, S. Z. Duan, Y. B. Chen, and L. C. Yin (2019). Cancer-selective bioreductive chemotherapy mediated by dual hypoxia-responsive nanomedicine upon photodynamic therapy induced hypoxia aggravation. Biomacromolecules 20, 2649–2656.

    Article  CAS  PubMed  Google Scholar 

  43. H. Wang, Y. Chen, J. Shang, H. Wang, M. Pan, X. Liu, X. Zhou, and F. Wang (2020). Multifunctional hypoxia-involved gene silencing nanoplatform for sensitizing photochemotherapy. ACS Appl. Mater. Inter. 12, 34588–34598.

    Article  CAS  Google Scholar 

  44. Y. Wang, M. Zu, X. Ma, D. Jia, Y. Lu, T. Zhang, P. Xue, Y. Kang, and Z. Xu (2020). Glutathione-responsive multifunctional “Trojan Horse” nanogel as a nanotheranostic for combined chemotherapy and photodynamic anticancer therapy. ACS Appl. Mater. Inter. 12, 50896–50908.

    Article  CAS  Google Scholar 

  45. J. Wang, Y. Gao, P. Liu, S. Xu, and X. Luo (2020). Core-shell multifunctional nanomaterial-based all-in-one nanoplatform for simultaneous multilayer imaging of dual types of tumor biomarkers and photothermal therapy. Anal. Chem. 92, 15169–15178.

    Article  CAS  PubMed  Google Scholar 

  46. D. H. Kim, D. W. Kim, J. Y. Jang, N. Lee, Y.-J. Ko, S. M. Lee, H. J. Kim, K. Na, and S. U. Son (2020). Fe3O4@void@microporous organic polymer-based multifunctional drug delivery systems: targeting, imaging, and magneto-thermal behaviors. ACS Appl. Mater. Inter. 12, 37628–37636.

    Article  CAS  Google Scholar 

  47. M. Dovedytis, Z. J. Liu, and S. Bartlett (2020). Hyaluronic acid and its biomedical applications: a review. Eng. Regen. 1, 102–113.

    Google Scholar 

  48. S. Y. Lee, M. S. Kang, W. Y. Jeong, D.-W. Han, and K. S. Kim (2020). Hyaluronic acid-based theranostic nanomedicines for targeted cancer therapy. Cancers 12, 940–955.

    Article  CAS  PubMed Central  Google Scholar 

  49. G. Kogan, L. Solte’s, R. Stern, and P. Gemeiner (2007). Hyaluronic acid: a natural biopolymer with a broad range of biomedical and industrial applications. Biotechnol. Lett. 29, 17–25.

    Article  CAS  PubMed  Google Scholar 

  50. N. V. Rao, J. G. Rho, and W. Um (2020). Hyaluronic acid nanoparticles as nanomedicine for treatment of inflammatory diseases. Pharmaceutics 12, 931–948.

    Article  CAS  PubMed Central  Google Scholar 

  51. L. Schaefer and R. M. Schaefer (2010). Proteoglycans: from structural compounds to signaling molecules. Cell Tissue Res. 339, 237.

    Article  CAS  PubMed  Google Scholar 

  52. L. Lapčík, L. Lapcik, S. De Smedt, J. Demeester, and P. Chabrecek (1998). Hyaluronan: preparation, structure, properties, and applications. Chem. Rev. 98, 2663–2684.

    Article  PubMed  Google Scholar 

  53. L. Udabage, G. R. Brownlee, S. K. Nilsson, and T. J. Brown (2005). The over-expression of HAS2, Hyal-2 and CD44 is implicated in the invasiveness of breast cancer. Exp. Cell Res. 310, 205–217.

    Article  CAS  PubMed  Google Scholar 

  54. G. Mattheolabakis, L. Milane, A. Singh, and M. M. Amiji (2015). Hyaluronic acid targeting of CD44 for cancer therapy: from receptor biology to nanomedicine. J. Drug Target 23, 605–618.

    Article  CAS  PubMed  Google Scholar 

  55. V. M. Platt and F. C. Szoka (2008). Anticancer therapeutics: targeting macromolecules and nanocarriers to hyaluronan or CD44, a hyaluronan receptor. Mol. Pharmaceutics 5, 474–486.

    Article  CAS  Google Scholar 

  56. H. Lee, K. Lee, and T. G. Park (2008). Hyaluronic acid-paclitaxel conjugate micelles: synthesis, characterization, and antitumor activity. Bioconjugate Chem. 19, 1319–1325.

    Article  CAS  Google Scholar 

  57. M. Miyazaki, E. Yuba, A. Harada, and K. Kono (2015). Hyaluronic acid derivative-modified liposomes as pH-sensitive anticancer drug delivery system. J. Controlled Release 213, 73–74.

    Article  Google Scholar 

  58. K. S. Kim, W. Hur, S.-J. Park, S. W. Hong, J. E. Choi, E. J. Goh, S. K. Yoon, and S. K. Hahn (2010). Bioimaging for targeted delivery of hyaluronic acid derivatives to the livers in cirrhotic mice using quantum dots. ACS nano 4, 3005–3014.

    Article  CAS  PubMed  Google Scholar 

  59. J. Xie, Y. Zheng, and J. Y. Ying (2009). Protein-directed synthesis of highly fluorescent gold nanoclusters. J. Am. Chem. Soc. 131, 888.

    Article  CAS  PubMed  Google Scholar 

  60. L. Y. Yin, J. Q. Huang, W. M. Huang, D. H. Li, G. H. Wang, and Y. D. Liu (2005). Microcystin-RR induced accumulation of reactive oxygen species and alteration of antioxidant systems in tobacco BY-2 cells. Toxicon 46, 507.

    Article  CAS  PubMed  Google Scholar 

  61. T.-K. Ryu, S. W. Baek, R. H. Kang, and S.-W. Choi (2016). Selective photothermal tumor therapy using nanodiamond-based nanoclusters with folic acid. Adv. Funct. Mater. 26, 6428–6436.

    Article  CAS  Google Scholar 

  62. G. B. Demirel, E. Aygul, A. Dag, S. Atasoy, Z. Cimen, and B. Cetin (2020). Folic acid-conjugated pH and redox-sensitive ellipsoidal hybrid magnetic nanoparticles for dual-triggered drug release. ACS Appl. Bio Mater. 3, 4949–4961.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The study was supported by the Natural Science Foundation of Guangxi Province (2017GXNSFBA198105), the National Natural Science Foundation of China (21765022) and the high-level personnel Research Funds of Yulin Normal University (G2017011, 2016YJKY08).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Na Li or Jian Peng.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, N., Chen, L., Luo, Z. et al. Dual-Targeting of Doxorubicin and Chlorine e6 Co-Delivery Based on Small-Size Nanocomposite for the Synergetic Imaging and Therapy. J Clust Sci 33, 1793–1807 (2022). https://doi.org/10.1007/s10876-021-02098-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-021-02098-1

Keywords

Navigation